Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find bounty of failed stars

12.10.2011
Astronomers find bounty of failed stars: One youngster only six times heftier than Jupiter

A University of Toronto-led team of astronomers has discovered over two dozen new free-floating brown dwarfs, including a lightweight youngster only about six times heftier than Jupiter, that reside in two young star clusters. What's more, one cluster contains a surprising surplus of them, harbouring half as many of these astronomical oddballs as normal stars.

"Our findings suggest once again that objects not much bigger than Jupiter could form the same way as stars do. In other words, nature appears to have more than one trick up its sleeve for producing planetary mass objects," says Professor Ray Jayawardhana, Canada Research Chair in Observational Astrophysics at the University of Toronto and leader of the international team that made the discovery.

Brown dwarfs straddle the boundary between stars and planets. Sometimes described as failed stars, they glow brightly when young, from the heat of formation, but cool down over time and end up with atmospheres that exhibit planet-like characteristics. Scientists think that most brown dwarfs may have formed like stars, in isolation from contracting gas clouds, but some of the puniest free-floaters may have formed like planets around a star and later ejected.

The findings come from observations using the Subaru Telescope in Hawaii and the Very Large Telescope (VLT) in Chile during the Substellar Objects in Nearby Young Clusters (SONYC) survey. Astronomers took extremely deep images of the NGC 1333 and rho Ophiuchi star clusters with Subaru at both optical and infrared wavelengths. Once they identified candidate brown dwarfs from the very red colors, the research team confirmed them with spectra taken at Subaru and the VLT. The team's findings will be reported in two upcoming papers in the Astrophysical Journal and presented this week at a scientific conference in Garching, Germany.

The six-Jupiter-mass brown dwarf found in the NGC 1333 cluster is one of the least massive free-floating objects known. "Its mass is comparable to those of giant planets, yet it doesn't circle a star. How it formed is a mystery," said Aleks Scholz of the Dublin Institute of Advanced Studies in Ireland, lead author of one paper and a former postdoctoral fellow at the University of Toronto.

Several other newly identified brown dwarfs in both NGC 1333 and rho Ophiuchi clusters have masses below 20 times that of Jupiter.

"Brown dwarfs seem to be more common in NGC 1333 than in other young star clusters. That difference may be hinting at how different environmental conditions affect their formation," says University of Toronto’s Koraljka Muzic, lead author of the second paper.

"We could not have made these exciting discoveries if not for the remarkable capabilities of Subaru and the VLT. Instruments that can image large patches of the sky and take hundreds of spectra at once are key to our success," said co-author Motohide Tamura of the National Astronomical Observatory of Japan.

Other co-authors of the two papers are Vincent Geers of ETH Zurich in Switzerland, also a former UofT postdoc, and Mariangela Bonavita of the University of Toronto.

Note to media: Visit www.artsci.utoronto.ca/main/media-releases/brown-dwarfs-from-sonyc-survey for images and research papers associate with this media release.

MEDIA CONTACTS:

Ray Jayawardhana
Department of Astronomy and Astrophysics
University of Toronto
rayjay@astro.utoronto.ca
857-334-3406
Dr. Koraljka Muzic
University of Toronto
muzic@astro.utoronto.ca
416-978-4971
Dr. Aleks Scholz
Dublin Institute for Advanced Studies
aleks@cp.dias.ie
353 (0)86 126 6608
Dr. Motohide Tamura
National Astronomical Observatory of Japan
motohide.tamura@nao.ac.jp
+81 (0)90 7198 8360
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca
http://ww.artsci.utoronto.ca/main/media-releases/astronomers-find-bounty-of-failed-stars

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>