Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find 9 new planets and upset the theory of planetary formation

14.04.2010
The discovery of nine new planets challenges the reigning theory of the formation of planets, according to new observations by astronomers. Two of the astronomers involved in the discoveries are based at the UC Santa Barbara-affiliated Las Cumbres Observatory Global Telescope Network (LCOGT), based in Goleta, Calif., near UCSB.

Unlike the planets in our solar system, two of the newly discovered planets are orbiting in the opposite direction to the rotation of their host star. This, along with a recent study of other exoplanets, upsets the primary theory of how planets are formed. There is a preponderance of these planets with their orbital spin going opposite to that of their parent star. They are called exoplanets because they are located outside of our solar system.

These and other related discoveries are being presented at the UK National Astronomy Meeting in Glasgow, Scotland, this week. This is the first public mention of the new planets and the research will be described in upcoming scientific journal articles.

"Planet evolution theorists now have to explain how so many planets came to be orbiting like this," said Tim Lister, a project scientist at LCOGT. Lister leads a major part of the observational campaigns along with Rachel Street of LCOGT, Andrew Cameron of the University of St. Andrews in Scotland, and Didier Queloz, of the Geneva Observatory in Switzerland.

Data from LCOGT was instrumental in confirming the new planet discoveries. By adding these nine new "transiting" planets, the number of known transiting planets has grown from 71 to 80. A transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes a small drop in the apparent brightness of the star and enables the planet's mass, diameter, density, and temperature to be deduced.

After the initial detection of the new exoplanets by the Wide Angle Search for Planets (WASP), the team of astronomers combined data from LCOGT's 2.0-meter Faulkes Telescopes in Hawaii and Australia with follow-up from other telescopes to confirm the discoveries and characterize the planets.

The planets are revolving around nearby stars within 1,000 light years of our galaxy. Their stars are located in the constellations Pegasus, Virgo, Pisces, and Andromeda in the northern hemisphere, and Eridanus, Hydra, Cetus, and Phoenix in the southern hemisphere.

The nine planets are called "Hot Jupiters." These planets are giant gas planets that orbit close to their star. In the 15 years since the first Hot Jupiters were discovered, their origin has been a puzzle. Because they are both large and close, they are easier to detect from their gravitational effect on their stars, and more likely to transit the disk of the star. Most of the first exoplanets discovered were of this type.

The cores of giant planets are thought to form from a mix of rock and ice particles found only in the cold outer reaches of planetary systems. Hot Jupiters, therefore, must form far from their star and subsequently migrate inwards over the course of a few million years. Many astronomers believed this could happen due to gravitational interactions with the disk of dust from which they formed, which might have also subsequently formed Earth-like rocky planets. However, these new results suggest that this may not be the whole story, because it does not explain how planets end up orbiting in a direction contrary that of the disk.

According to the research team, the best alternative migration theory suggests that the proximity of Hot Jupiters to their stars is not due to interactions with the dust disk at all, but to a slower evolution involving a gravitational tug-of-war with more distant planetary or stellar companions over hundreds of millions of years. Bounced onto a tilted and elongated orbit, a wandering gas giant would suffer tidal friction every time it swung close to the star, eventually becoming parked in a near circular, but randomly tilted orbit close to the star. "In this scenario, smaller planets in orbits similar to Earth's are unlikely to survive," said Rachel Street.

Las Cumbres Observatory Global Telescope Network is a non-profit organization dedicated to building a worldwide network of robotically controlled telescopes, which will enable astronomers to observe 24 hours a day, from both hemispheres. Currently, LCOGT operates two 2.0-meter telescopes: Faulkes North in Maui, Hawaii, and Faulkes South in New South Wales, Australia. LCOGT also has a telescope in Sedgwick Reserve, a nature reserve in Central California funded and managed by UC and UCSB. Over the course of the next few years, an armada of telescopes will be commissioned, distributed over six sites in both hemispheres of the globe, all controlled from LCOGT's headquarters in Goleta, Calif. These new facilities will be one of the largest networks of telescopes in the world, and will be an unprecedented tool for exploring the dynamic nature of a range of astrophysical phenomena. LCOGT's flexible approach to scheduling means the network provides responsive and highly efficient follow-up for large-scale surveys such as WASP. LCOGT is affiliated with neighboring UC Santa Barbara.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>