Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find 9 new planets and upset the theory of planetary formation

14.04.2010
The discovery of nine new planets challenges the reigning theory of the formation of planets, according to new observations by astronomers. Two of the astronomers involved in the discoveries are based at the UC Santa Barbara-affiliated Las Cumbres Observatory Global Telescope Network (LCOGT), based in Goleta, Calif., near UCSB.

Unlike the planets in our solar system, two of the newly discovered planets are orbiting in the opposite direction to the rotation of their host star. This, along with a recent study of other exoplanets, upsets the primary theory of how planets are formed. There is a preponderance of these planets with their orbital spin going opposite to that of their parent star. They are called exoplanets because they are located outside of our solar system.

These and other related discoveries are being presented at the UK National Astronomy Meeting in Glasgow, Scotland, this week. This is the first public mention of the new planets and the research will be described in upcoming scientific journal articles.

"Planet evolution theorists now have to explain how so many planets came to be orbiting like this," said Tim Lister, a project scientist at LCOGT. Lister leads a major part of the observational campaigns along with Rachel Street of LCOGT, Andrew Cameron of the University of St. Andrews in Scotland, and Didier Queloz, of the Geneva Observatory in Switzerland.

Data from LCOGT was instrumental in confirming the new planet discoveries. By adding these nine new "transiting" planets, the number of known transiting planets has grown from 71 to 80. A transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes a small drop in the apparent brightness of the star and enables the planet's mass, diameter, density, and temperature to be deduced.

After the initial detection of the new exoplanets by the Wide Angle Search for Planets (WASP), the team of astronomers combined data from LCOGT's 2.0-meter Faulkes Telescopes in Hawaii and Australia with follow-up from other telescopes to confirm the discoveries and characterize the planets.

The planets are revolving around nearby stars within 1,000 light years of our galaxy. Their stars are located in the constellations Pegasus, Virgo, Pisces, and Andromeda in the northern hemisphere, and Eridanus, Hydra, Cetus, and Phoenix in the southern hemisphere.

The nine planets are called "Hot Jupiters." These planets are giant gas planets that orbit close to their star. In the 15 years since the first Hot Jupiters were discovered, their origin has been a puzzle. Because they are both large and close, they are easier to detect from their gravitational effect on their stars, and more likely to transit the disk of the star. Most of the first exoplanets discovered were of this type.

The cores of giant planets are thought to form from a mix of rock and ice particles found only in the cold outer reaches of planetary systems. Hot Jupiters, therefore, must form far from their star and subsequently migrate inwards over the course of a few million years. Many astronomers believed this could happen due to gravitational interactions with the disk of dust from which they formed, which might have also subsequently formed Earth-like rocky planets. However, these new results suggest that this may not be the whole story, because it does not explain how planets end up orbiting in a direction contrary that of the disk.

According to the research team, the best alternative migration theory suggests that the proximity of Hot Jupiters to their stars is not due to interactions with the dust disk at all, but to a slower evolution involving a gravitational tug-of-war with more distant planetary or stellar companions over hundreds of millions of years. Bounced onto a tilted and elongated orbit, a wandering gas giant would suffer tidal friction every time it swung close to the star, eventually becoming parked in a near circular, but randomly tilted orbit close to the star. "In this scenario, smaller planets in orbits similar to Earth's are unlikely to survive," said Rachel Street.

Las Cumbres Observatory Global Telescope Network is a non-profit organization dedicated to building a worldwide network of robotically controlled telescopes, which will enable astronomers to observe 24 hours a day, from both hemispheres. Currently, LCOGT operates two 2.0-meter telescopes: Faulkes North in Maui, Hawaii, and Faulkes South in New South Wales, Australia. LCOGT also has a telescope in Sedgwick Reserve, a nature reserve in Central California funded and managed by UC and UCSB. Over the course of the next few years, an armada of telescopes will be commissioned, distributed over six sites in both hemispheres of the globe, all controlled from LCOGT's headquarters in Goleta, Calif. These new facilities will be one of the largest networks of telescopes in the world, and will be an unprecedented tool for exploring the dynamic nature of a range of astrophysical phenomena. LCOGT's flexible approach to scheduling means the network provides responsive and highly efficient follow-up for large-scale surveys such as WASP. LCOGT is affiliated with neighboring UC Santa Barbara.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>