Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find 7 dwarf galaxies with new telescope

11.07.2014

Meet the seven new dwarf galaxies.

Yale University astronomers, using a new type of telescope made by stitching together telephoto lenses, recently discovered seven celestial surprises while probing a nearby spiral galaxy. The previously unseen galaxies may yield important insights into dark matter and galaxy evolution, while possibly signaling the discovery of a new class of objects in space.


This image shows the field of view from the Dragonfly Telephoto Array, centered on M101. Inset images highlight the seven new galaxies.

Credit: Yale University

For now, scientists know they have found a septuplet of new galaxies that were previously overlooked because of their diffuse nature: The ghostly galaxies emerged from the night sky as the team obtained the first observations from the "homemade" telescope.

The discovery came quickly, in a relatively small section of sky. "We got an exciting result in our first images," said Allison Merritt, a Yale graduate student and lead author of a paper about the discovery in the Astrophysical Journal Letters. "It was very exciting. It speaks to the quality of the telescope."

... more about:
»Astronomers »Hubble »M101 »Merritt »dwarf »galaxies »lenses »objects

Pieter van Dokkum, chair of Yale's astronomy department, designed the robotic telescope with University of Toronto astronomer Roberto Abraham. Their Dragonfly Telephoto Array uses eight telephoto lenses with special coatings that suppress internally scattered light. This makes the telescope uniquely adept at detecting the very diffuse, low surface brightness of the newly discovered galaxies.

"These are the same kind of lenses that are used in sporting events like the World Cup. We decided to point them upward instead," van Dokkum said. He and Abraham built the compact, oven-sized telescope in 2012 at New Mexico Skies, an observatory in Mayhill, N.M. The telescope was named Dragonfly because the lenses resemble the compound eye of an insect.

"We knew there was a whole set of science questions that could be answered if we could see diffuse objects in the sky," van Dokkum said. In addition to discovering new galaxies, the team is looking for debris from long-ago galaxy collisions.

"It's a new domain. We're exploring a region of parameter space that had not been explored before," van Dokkum said.

The Yale scientists will tackle a key question next: Are these seven newly found objects dwarf galaxies orbiting around the M101 spiral galaxy, or are they located much closer or farther away, and just by chance are visible in the same direction as M101?

If it's the latter, Merritt said, these objects represent something entirely different. "There are predictions from galaxy formation theory about the need for a population of very diffuse, isolated galaxies in the universe," Merritt said. "It may be that these seven galaxies are the tip of the iceberg, and there are thousands of them in the sky that we haven't detected yet."

Merritt stressed that until they collect more data and determine the distances to the objects, researchers won't know their true nature. But the possibilities are intriguing enough that the team has been granted the opportunity to use the Hubble Space Telescope for further study.

"I'm confident that some of them will turn out to be a new class of objects," van Dokkum said. "I'd be surprised if all seven of them are satellites of M101."

Meanwhile, there is also more work to be done with the new telescope. "We are collecting new data with the Dragonfly telescope every clear night. We're all curious to see what other surprises the night sky has in store for us," Merritt said.

Jim Shelton | Eurek Alert!
Further information:
http://www.yale.edu

Further reports about: Astronomers Hubble M101 Merritt dwarf galaxies lenses objects

More articles from Physics and Astronomy:

nachricht A New Litmus Test for Chaos?
29.07.2015 | American Institute of Physics (AIP)

nachricht First detection of lithium from an exploding star
29.07.2015 | ESO

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>