Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find 7 dwarf galaxies with new telescope

11.07.2014

Meet the seven new dwarf galaxies.

Yale University astronomers, using a new type of telescope made by stitching together telephoto lenses, recently discovered seven celestial surprises while probing a nearby spiral galaxy. The previously unseen galaxies may yield important insights into dark matter and galaxy evolution, while possibly signaling the discovery of a new class of objects in space.


This image shows the field of view from the Dragonfly Telephoto Array, centered on M101. Inset images highlight the seven new galaxies.

Credit: Yale University

For now, scientists know they have found a septuplet of new galaxies that were previously overlooked because of their diffuse nature: The ghostly galaxies emerged from the night sky as the team obtained the first observations from the "homemade" telescope.

The discovery came quickly, in a relatively small section of sky. "We got an exciting result in our first images," said Allison Merritt, a Yale graduate student and lead author of a paper about the discovery in the Astrophysical Journal Letters. "It was very exciting. It speaks to the quality of the telescope."

... more about:
»Astronomers »Hubble »M101 »Merritt »dwarf »galaxies »lenses »objects

Pieter van Dokkum, chair of Yale's astronomy department, designed the robotic telescope with University of Toronto astronomer Roberto Abraham. Their Dragonfly Telephoto Array uses eight telephoto lenses with special coatings that suppress internally scattered light. This makes the telescope uniquely adept at detecting the very diffuse, low surface brightness of the newly discovered galaxies.

"These are the same kind of lenses that are used in sporting events like the World Cup. We decided to point them upward instead," van Dokkum said. He and Abraham built the compact, oven-sized telescope in 2012 at New Mexico Skies, an observatory in Mayhill, N.M. The telescope was named Dragonfly because the lenses resemble the compound eye of an insect.

"We knew there was a whole set of science questions that could be answered if we could see diffuse objects in the sky," van Dokkum said. In addition to discovering new galaxies, the team is looking for debris from long-ago galaxy collisions.

"It's a new domain. We're exploring a region of parameter space that had not been explored before," van Dokkum said.

The Yale scientists will tackle a key question next: Are these seven newly found objects dwarf galaxies orbiting around the M101 spiral galaxy, or are they located much closer or farther away, and just by chance are visible in the same direction as M101?

If it's the latter, Merritt said, these objects represent something entirely different. "There are predictions from galaxy formation theory about the need for a population of very diffuse, isolated galaxies in the universe," Merritt said. "It may be that these seven galaxies are the tip of the iceberg, and there are thousands of them in the sky that we haven't detected yet."

Merritt stressed that until they collect more data and determine the distances to the objects, researchers won't know their true nature. But the possibilities are intriguing enough that the team has been granted the opportunity to use the Hubble Space Telescope for further study.

"I'm confident that some of them will turn out to be a new class of objects," van Dokkum said. "I'd be surprised if all seven of them are satellites of M101."

Meanwhile, there is also more work to be done with the new telescope. "We are collecting new data with the Dragonfly telescope every clear night. We're all curious to see what other surprises the night sky has in store for us," Merritt said.

Jim Shelton | Eurek Alert!
Further information:
http://www.yale.edu

Further reports about: Astronomers Hubble M101 Merritt dwarf galaxies lenses objects

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>