Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover universe's most distant quasar

30.06.2011
A scientist at The University of Nottingham is part of a team of astronomers which has discovered the most distant quasar to date — a development that could help further our understanding of a universe still in its infancy following the Big Bang.

This brilliant and rare beacon, powered by a black hole with a mass two billion times that of the Sun, is by far the brightest object yet found from a time when the Universe was less than 800 million years old — just a fraction of its current age.

The object that has been found, named ULAS J1120+0641, is around 100 million years younger than the previously known most distant quasar. It lies at a redshift of 7.1 which corresponds to looking back in time to a Universe that was only 770 million years old, only five per cent of its current age. Prior to this discovery, the most distant quasar known has a redshift of 6.4, the equivalent of a Universe that was 870 million years old.

With only an estimated 100 bright quasars with a redshift of higher than 7 in the whole sky, their discovery is an extremely rare find.

Nottingham's Dr Simon Dye was on the team which made the discovery, detailed in the June 30 2011 edition of the journal Nature.

Dr Dye said: "Objects that lie at such large distance are almost impossible to find in visible-light surveys because their light is stretched by the expansion of the universe. This means that by the time their light gets to Earth, most of it ends up in the infrared part of the electromagnetic spectrum.

"It took us five years to find this object. We were looking for a quasar with a redshift higher than 6.5. Finding one this far away, at a redshift higher than 7, was an exciting surprise. This quasar provides a unique opportunity to explore a 100 million year window of the cosmos that was previously out of reach."

Quasars are very bright and distant galaxies that are believed to be powered by supermassive black holes at their centres. Their great brilliance makes them powerful probes to help study the period in the history of the Universe when the first stars and galaxies were forming.

The astronomers initially detected the record-holding quasar using the UK Infra-Red Telescope (UKIRT) located in Hawaii, as part of the UKIRT Infrared Deep Sky Survey (UKIDSS). The distance to the quasar was confirmed by observations made with the FORS2 instrument on the European Southern Observatory's Very Large Telescope (VLT) and instruments on the Gemini North Telescope. Because the object is comparatively bright, it is possible to perform a spectroscopic analysis, which entails splitting the object's light into its component colours, which in turn allows astronomers to determine the quasar's physical characteristics.

The observations show that the mass of the black hole at the centre of the new quasar was about two billion times that of the Sun. This very high mass is hard to explain to early on after the Big Bang. Current theories for the growth of supermassive black holes show a slow build up in mass as the compact object pulls in matter from its surroundings. According to these models, the mass of the quasar's black hole is not expected to be higher than one-quarter of the value now determined for ULAS J1120+0641.

The team is now speculating that the existence of such a massive black hole so early on in the history of the Universe means that current models for the growth of these objects may need to be revised.

The research was led by the Astrophysics Group at Imperial College London and also involved the European Southern Observatory in Germany, the Institute of Astronomy in Cambridge, the Astrophysics Research Institute at Liverpool John Moores University, the Institute for Computational Cosmology at the University of Durham, Universiteit Antwerpen in Belgium and the Joint Astronomy Centre in Hawaii.

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>