Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover stars in early galaxies had a need for speed

10.08.2009
A team of astronomers has measured the motions of stars in a very distant galaxy for the first time and discovered they are whizzing around at astonishingly high speeds—about one million miles per hour, or twice the speed at which the Sun circles our own Milky Way galaxy.

The finding offers new insights into how these early galaxies may have evolved into the more familiar ones we see in the nearby universe.

The team spent an unprecedented 29 hours observing the galaxy with one of the largest telescopes on Earth—the Gemini South Telescope in Chile—to collect enough light to determine how fast its stars are moving.

Because stars' velocities are directly related to the mass they are orbiting, the ultra-fast speeds would ordinarily suggest the galaxy is very large. But additional observations from the Hubble Space Telescope showed that the galaxy is in fact much smaller than expected, with a diameter of about 5000 light years.

"This result is surprising, as the galaxy itself is extremely small," said Pieter van Dokkum, professor of astronomy and physics at Yale University and lead author of the paper, which appears in the August 6 issue of Nature. "We do find stars with comparable speeds in mature galaxies in today's nearby universe, but those galaxies are typically many tens of thousands of light years across. Here we have a very small galaxy in the young universe whose stars behave as if they were in a giant galaxy."

Because the galaxy is 11 billion light years away, the light it emitted took 11 billion years to reach us on Earth. That means we see the galaxy as it was when the universe was only three billion years old, compared to its current age of 14 billion years.

One of the big riddles is how such extreme galaxies form so quickly, and why we don't see any in today's nearby universe. "It's possible these are the seeds that grow and evolve into the more massive galaxies we see closer to home," van Dokkum said.

The team hopes to look back even further in space and time to see these types of galaxies as they were first forming. "The ancestors of these extreme galaxies should have quite spectacular properties, as they must have formed a huge amount of stars in a relatively short amount of time," van Dokkum said.

Other authors of the paper include Mariska Kriek (Princeton University) and Marijn Franx (Leiden Observatory).

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>