Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover rare galaxy at dawn of time

22.12.2011
UC Riverside's Bahram Mobasher and Hooshang Nayyeri are members of international research team

Astronomers, including the University of California, Riverside's Bahram Mobasher and his graduate student Hooshang Nayyeri, have discovered that one of the most distant galaxies known is churning out stars at a shockingly high rate. The researchers made the discovery using NASA's Spitzer and Hubble space telescopes. The blob-shaped galaxy, called GN-108036, is the brightest galaxy found to date at such great distances.


This image shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy's light took 12.9 billion years to reach us. Credit: NASA/JPL-Caltech/STScI/University of Tokyo

The galaxy, which was discovered and confirmed using ground-based telescopes, is 12.9 billion light-years away. Data from Spitzer and Hubble were used to measure the galaxy's high star production rate, equivalent to about 100 suns per year. For reference, our Milky Way galaxy is about five times larger and 100 times more massive than GN-108036, but makes roughly 30 times fewer stars per year.

The discovery is surprising because previous surveys had not found galaxies this bright so early in the history of the universe. According to the researches, GN-108036 may be a special, rare object that they happened to catch during an extreme burst of star formation.

The international team of astronomers, led by Masami Ouchi of the University of Tokyo, Japan, first identified the remote galaxy after scanning a large patch of sky with the Subaru Telescope atop Mauna Kea in Hawaii. Its great distance was then carefully confirmed with the W.M. Keck Observatory, also on Mauna Kea.

GN-108036 lies near the very beginning of time itself, a mere 750 million years after our universe was created 13.7 billion years ago in an explosive "Big Bang." Its light has taken 12.9 billion years to reach us, so we are seeing it as it existed in the very distant past.

Astronomers refer to the object's distance by a number called its "redshift," which relates to how much its light has stretched to longer, redder wavelengths due to the expansion of the universe. Objects with larger redshifts are farther away and are seen further back in time. GN-108036 has a redshift of 7.2. Only a handful of galaxies have confirmed redshifts greater than 7, and only two of these have been reported to be more distant than GN-108036.

Infrared observations from Spitzer and Hubble were crucial for measuring the galaxy's star-formation activity. Astronomers were surprised to see such a large burst of star formation because the galaxy is so small and from such an early cosmic era. Back when galaxies were first forming, in the first few hundreds of millions of years after the Big Bang, they were much smaller than they are today, having yet to bulk up in mass.

During this epoch, as the universe expanded and cooled after its explosive start, hydrogen atoms permeating the cosmos formed a thick fog that was opaque to ultraviolet light. This period, before the first stars and galaxies had formed and illuminated the universe, is referred to as the "dark ages." The era came to an end when light from the earliest galaxies burned through, or "ionized," the opaque gas, causing it to become transparent. Galaxies similar to GN-108036 may have played an important role in this event.

"The high rate of star formation found for GN-108036 implies that it was rapidly building up its mass some 750 million years after the Big Bang, when the universe was only about five percent of its present age," said Mobasher, a professor of physics and astronomy. "This was therefore a likely ancestor of massive and evolved galaxies seen today."

The researchers report their findings in the Astrophysical Journal.

Other authors include: Kyle Penner and Benjamin J. Weiner of the University of Arizona, Tucson; Yoshiaki Ono, Kazuhiro Shimasaku and Kimihiko Nakajima of the University of Tokyo; Mark Dickinson and Jeyhan S. Kartaltepe of the National Optical Astronomy Observatory, Ariz.; Daniel Stern of NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif.; Nobunari Kashikawa of the National Astronomical Observatory of Japan; and Hyron Spinrad of UC Berkeley.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>