Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers discover missing link for origin of comets

An international team of scientists that includes University of British Columbia astronomer Brett Gladman has found an unusual object whose backward and tilted orbit around the Sun may clarify the origins of certain comets.

In the first discovery of its kind, researchers from Canada, France and the United States have discovered an object that orbits around the Sun backwards, and tilted at an angle of 104 degrees – almost perpendicular to the orbits of the planets.

"Certain types of comets are not naturally produced after planet formation, especially those with highly tilted orbits," says Prof. Gladman. "This discovery may finally show how they transition from the Oort Cloud to become objects like Halley's Comet."

Composed of icy rock, 2008 KV42 is called a "trans-Neptunian" object since its orbital path is larger than that of Neptune. The object is roughly 50 kilometres across and at present 35 times further from than the Sun than Earth.

The orbits of such objects in the region beyond Neptune's orbit provide fresh insights into the early history of our solar system, says Gladman, who teaches in the Dept. of Physics and Astronomy and holds the Canada Research Chair in Planetary Astronomy.

The international team has been carrying out a targeted search for objects with highly tilted orbits. Their discovery was made using the Canada-France-Hawaii Telescope in Hawaii, with follow-up observations provided by the MMT telescope in Arizona, the Cerro Tololo Inter-American Observatory (CTIO) four-metre telescope in Chile, and the Gemini South telescope, also in Chile, in which Canada is a partner.

"Having quick access to the MMT and Gemini South telescopes, via the generous support of the observers and directors, was critical here. Given the highly unusual orbit, the object would have been lost without the rapid tracking from these large telescopes," says Gladman.

Lorraine Chan | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>