Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Discover How Lowly Dwarf Galaxy Becomes Star-Forming Powerhouse

10.09.2015

A nearby dwarf galaxy poses an intriguing mystery: How is it able to form brilliant star clusters without the dusty, gas-rich environments found in larger galaxies? The answer, astronomers believe, lies in densely packed and previously unrecognized nuggets of star-forming material sprinkled throughout the galaxy.

An international team of astronomers [1] using the Atacama Large Millimeter/submillimeter Array (ALMA) has discovered an unexpected population of compact interstellar clouds hidden within the nearby dwarf irregular galaxy [2] Wolf--Lundmark--Melotte, more commonly known as WLM.


B. Saxton (NRAO/AUI/NSF); M. Rubio et al., Universidad de Chile, ALMA (NRAO/ESO/NAOJ); D. Hunter and A. Schruba, VLA (NRAO/AUI/NSF); P. Massey/Lowell Observatory and K. Olsen (NOAO/AURA/NSF)

These clouds, which are nestled within a heavy blanket of interstellar material, help explain how dense star clusters [3] are able to form in the tenuous environs of a galaxy thousands of times smaller and far more diffuse than our own Milky Way.

"For many reasons, dwarf irregular galaxies like WLM are poorly equipped to form star clusters," noted Monica Rubio, an astronomer with the University of Chile and lead author on a paper to appear in the scientific journal Nature. "These galaxies are fluffy with very low densities. They also lack the heavy elements that contribute to star formation. Such galaxies should only form dispersed stars rather than concentrated clusters, but that is clearly not the case."

By studying this galaxy with ALMA, the astronomers were able to locate, for the first time, compact regions that appear able to emulate the nurturing environments found in larger galaxies.

These regions were discovered by pinpointing the almost imperceptible and highly localized millimeter wavelength light emitted by carbon monoxide (CO) molecules, which are typically associated with star-forming interstellar clouds.

Earlier, an affiliated team of astronomers led by Deidre Hunter at the Lowell Observatory in Flagstaff, Ariz., first detected CO in the WLM galaxy with the single-dish Atacama Pathfinder Experiment (APEX) telescope [4]. These initial, low-resolution observations could not resolve where the molecules reside, but they did confirm that WLM contains the lowest abundance of CO ever detected in any galaxy. This lack of CO and other heavy elements should put a serious damper on star formation, the astronomers note.

"Molecules, and carbon monoxide in particular, play an important role in star formation," said Rubio. "As gas clouds begin to collapse, temperatures and densities rise, pushing back against gravity. That's where these molecules and dust particles come to the rescue by absorbing some of the heat through collisions and radiating it into space at infrared and submillimeter wavelengths." This cooling effect enables gravity to continue the collapse until a star forms.

The problem previously was that in WLM and similar galaxies with very low abundances of heavy elements, astronomers simply didn't see enough of this material to account for the new star clusters they observed.

The reason the CO was initially so difficult to see, the researchers discovered, is that unlike in normal galaxies, the WLM clouds are very tiny compared to their overlying envelopes of molecular and atomic gas.

To become viable star factories, the concentrated CO clouds need these enormous envelopes of transitional gas to bear down on them, giving the cores of CO a high enough density to allow them to form a normal cluster of stars.

"Like a diver being squeezed at the bottom of a deep abyss, these bundles of star-forming gas are under tremendous pressure, even though the surrounding ocean of interstellar gas is much more shallow," said Bruce Elmegreen, a co-author on the paper and researcher at the IBM T.J. Watson Research Center in Yorktown Heights, N.Y. "By discovering that the carbon monoxide is confined to highly concentrated regions within a vast expanse of transitional gas, we could finally understand the mechanisms that led to the impressive stellar neighborhoods we see in the galaxy today."

Further studies with ALMA will also help determine the conditions that formed the globular clusters found in the halo of the Milky Way. Astronomers believe these much larger clusters may have originally formed in dwarf galaxies and later migrated to the halo after their host dwarf galaxies dispersed.

WLM is a relatively isolated dwarf galaxy located approximately 3 million light-years away on the outer edges of the Local Group: the collection of galaxies that includes the Milky Way, the Magellanic Clouds, Andromeda, M33, and dozens of smaller galaxies.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

# # #

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the US National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

[1] Collaborators in the present study include Monica Rubio, Universidad de Chile, Santiago; Bruce G. Elmegreen, IBM T.J. Watson Research Center, Yorktown Heights, N.Y.; Deidre A. Hunter, Lowell Observatory, Flagstaff, Ariz; Elias Brinks, University of Hertfordshire, UK; Juan R. Cortes, Joint ALMA Observatory and National Radio Astronomy Observatory, Santiago, Chile; and Phil Cigan, New Mexico Institute of Mining and Technology, Socorro.

[2] Irregular galaxies lack the distinctive shapes of spiral and elliptical galaxies. Dwarf irregulars, like WLM, are hundreds of times smaller than the larger variety and contain only a few hundred million stars instead of tens of billions. Though small, some are now known to harbor massive black holes at their centers.

[3] Star clusters, like the Pleiades found in our own Milky Way galaxy, are made up of hundreds of stars. Others, like globular clusters, can contain hundreds of thousands to a few million stars. Though many stars in the Milky Way originally form in clusters, some - like the Sun - drift away from their stellar nurseries and move freely throughout their home galaxy. Stars in the largest and densest clusters, like those observed in WLM, remain relatively close together.

[4] The APEX team was led by Deidre Hunter at the Lowell Observatory in Flagstaff, Ariz., and Elias Brinks at the University of Hertfordshire, U.K. It also included Monica Rubio; Bruce Elmegreen; Andreas Schruba, California Institute of Technology, Pasadena, Calif.; and Celia Verdugo, University of Chile.

Contact Information
Charles Blue
cblue@nrao.edu
Phone: 434-296-0314
Mobile: 202-236-6324

http://www.nrao.edu

Charles Blue | newswise

Further reports about: ALMA Galaxies Galaxy Milky Way Observatory Star-Forming astronomy carbon monoxide clouds dwarf

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>