Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover densest galaxy ever

25.09.2013
Imagine the distance between the sun and the star nearest to it – a star called Alpha Centauri. That’s a distance of about 4 light years. Now, imagine as many as 10,000 of our suns crammed into that relatively small space.

That is about the density of a galaxy that was recently discovered by an international team of astronomers led by a Michigan State University faculty member.


Astronomers have discovered what may be the densest galaxy in the nearby universe. The team that discovered the rare ultra-compact dwarf galaxy was led by MSU’s Jay Strader. The larger image was captured by NASA’s Chandra X-ray Observatory. The inset photo of the galaxy was taken by the Hubble Space Telescope.

“This galaxy is more massive than any ultra-compact drawfs of comparable size,” said Jay Strader, MSU assistant professor of physics and astronomy, “and is arguably the densest galaxy known in the local universe.”

As detailed in the recent edition of the publication Astrophysical Journal Letters, the ultra-compact dwarf galaxy was found in what’s known as the Virgo cluster of galaxies, a collection of galaxies located about 54 million light years from our own Milky Way.

What makes this galaxy, dubbed M60-UCD1, so remarkable is that about half of its mass is found within a radius of only about 80 light years. This would make the density of stars about 15,000 times greater than found in Earth’s neighborhood in the Milky Way.

“Traveling from one star to another would be a lot easier in M60-UCD1 than it is in our galaxy,” Strader said. “Since the stars are so much closer in this galaxy, it would take just a fraction of the time.”

The discovery of ultra-compact galaxies is relatively new – only within the past 10 years or so. Until then, astronomers could see these “things” way off in the distance but assumed they were either single stars or very-distant galaxies.

Another intriguing aspect of this galaxy is the presence of a bright X-ray source in its center. One explanation for this is a giant black hole weighing in at some 10 million times the mass of our sun.

Astronomers are trying to determine if M60-UCD1 and other ultra-compact dwarf galaxies are either born as really jam-packed star clusters or if they are galaxies that get smaller because they have stars ripped away from them. The possible massive black hole, combined with the high galaxy mass and sun-like levels of elements found in the stars, favor the latter idea.

A giant black hole at the center of M60-UCD1 helps tip the scales against the scenario where this galaxy was once a star cluster, since such large black holes are not found in these types of objects.

The galaxy was discovered using NASA’s Hubble Space Telescope. Follow-up observations were done with NASA’s Chandra X-ray Observatory and ground-based optical telescopes, including the Keck 10-meter telescope in Hawaii.

“Twenty years ago we couldn’t have done this,” Strader said. “We didn’t have Hubble or Chandra. This is one of those projects where you bring together the full force of NASA’s great observatories, plus ground-based resources.”

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>