Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers close in on planets that could be masters of survival


Two independent groups of astronomers, one led by Simona Ciceri of the Max Planck Institute for Astronomy, have discovered an unusually massive planet which orbits a red giant star. The planet, Kepler-432b, is one of a total of just five known planets which orbit red giant stars at a fairly close distance. Previously, it had been thought that such planets would be swallowed by their host stars fairly quickly; the new discovery indicates they might survive for longer than previously thought.

First hints of the existence of the planet Kepler-432b came from measurements of NASA’s Kepler space telescope. The telescope recorded tiny dips in the brightness of the planet’s host star, caused by the planet passing directly between the star and observers on Earth and blocking some of the star’s light (“planetary transit”). Such dips, however, can have causes other than orbiting planets.

The 2.2 meter telescope at Calar Alto observatory, which was used to confirm the existence of the planet Kepler-432b

Image: MPIA

Confirmation that Kepler had indeed found a planet came only with the recent independent observations by two groups of astronomers: a group led by Simona Ciceri of the Max Planck Institute for Astronomy (MPIA) and one led by Mauricio Ortiz of the Centre for Astronomy of Heidelberg University (ZAH).

The astronomers had used the CAFE spectrograph at the 2.2 meter telescope at Calar Alto Observatory to detect the planet’s traces in the spectrum of the star (“radial velocity method”). The group from ZAH also observed Kepler-432b with the Nordic Optical Telescope on La Palma (Canary Islands).

The combination of the observations by Kepler and with the CAFE spectrograph provided sufficient data to enable the astronomers reconstruct the planet’s size and mass. Kepler-432b turns out to be unusual in more than one respect. It is about the same size as Jupiter, but with six times Jupiter’s mass, making it unusually dense. Its orbit is an elongated ellipse, leading to temperature variations between 500 and 1000 degrees Celsius as the planet moves around its host star.

But the most puzzling aspect of Kepler-432b might be why it and other similar planets exist in the first place. The problem is the planet’s proximity to its host star. Of the nearly 1900 exoplanets known, around 50 orbit stars in the later stages of their lives: red giant stars, which have swollen to between ten and a hundred times their former size as their outer regions have heated up.

For a star’s planets, this swelling-up can be fatal: Planets too close to the star will be swallowed up, and planets orbiting too close to the red giant’s surface are likely to be drawn in and swallowed within tens or a few hundreds of million years – a short time-span compared with the more than 10 billion years’ life-time of a star like our Sun.

Until now, astronomers have observed 5 planets, including Kepler-432b, which are unusually close to their red giant hosts. Of these, only two, namely Kepler-432b and Kepler-91b have been observed sufficiently closely to determine both their mass and their size (radial velocity and transit data). Another two have been detected only by measuring their planetary transits, while one has been found using spectral measurements only (radial velocity method).

If a phenomenon is fairly short-lived, astronomers do not expect to observe many examples of it. Simona Ciceri, the PhD student at the Max Planck Institute for Astronomy who led the first of the studies of Kepler-432b, says: “At this point, there are two possibilities: Either we have been unusually lucky to observe two rare, close planetary orbits such as those of Kepler-432b and Kepler-91b.

Or else, planets like these survive for much longer than was previously assumed.” Now the data is in, it’s the turn of those who simulate planetary interaction with giant stars to re-check their simulations and to come up with an answer.

Even though the planet has proven a master of survival so far, in the long run, there will be no escape: “The days of Kepler-432b are numbered,” adds Mauricio Ortiz, the PhD student at Heidelberg University who led the other study of the planet. “In less than 200 million years, Kepler-432b will be swallowed by its continually expanding host star.”

Contact information

Simona Ciceri (first author)
Max Planck Institute for Astronomy
Phone: +49 6221 528-351

Luigi Mancini (co-author)
Max Planck Institute for Astronomy
Phone: +49 6221 528-454

Markus Pössel (public information officer)
Max Planck Institute for Astronomy
Phone: +49 6221 528-261

Background information

The work described here has been published by two independent groups as

S. Ciceri, J. Lillo-Box, J. Southworth, L. Mancini, T. Henning, D. Barrado: Kepler-432 b: a massive planet in a highly eccentric orbit transiting a red giant, Astronomy & Astrophysics 573 (January 2015), doi: 10.1051/0004-6361/201425145

M. Ortiz, D. Gandolfi, S. Reffert, A. Quirrenbach, H.J. Deeg, R. Karjalainen, P. Montañés-Rodríguez, D. Nespral, G. Nowak, Y. Osorio and E. Palle: Kepler-432 b: a massive warm Jupiter in a 52 day eccentric orbit transiting a giant star, Astronomy & Astrophysics 573 (January 2015), doi: 10.1051/0004-6361/201425146

Weitere Informationen: - web version of this press release - original article by Ciceri et al. - original article by Ortiz et al.

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

More VideoLinks >>>