Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers catch a star being revved-up

26.05.2009
Researchers have witnessed a star being transformed into an object that spins at almost 600 times a second using telescopes in the USA and the Netherlands, and CSIRO's Parkes telescope in Australia.

The work, which is published online in Science Express on 21 May, was undertaken by an international team led by PhD student Anne Archibald and her supervisor, Professor Victoria Kaspi of McGill University in Montreal, Canada.

"This object, called PSR J1023+0038, is a millisecond pulsar, a condensed star about the size of a major city," said CSIRO's Australia Telescope National Facility researcher Dr David Champion.

"It's now revolving at 592 times a second, which means it's one of the fastest spinning objects we know." PSR J1023+0038 lies 4000 light-years from Earth in the constellation Sextans.

Pulsars are superdense neutron stars, the squashed-in cores of massive stars that have exploded. We detect them by the beams of radio waves they emit, which sweep over Earth like a lighthouse beam as the pulsar rotates.

A teaspoon of neutron-star material has a mass of about a billion tonnes.

Most pulsars spin relatively slowly, a few to tens of times a second, but the "millisecond pulsars" scream along, rotating hundreds of times a second. Astronomers have long thought that millisecond pulsars are ordinary pulsars "spun up" with the help of an orbiting companion star. The companion dumps matter onto the pulsar, causing it to spin far faster. The material from the companion would form a flat, spinning "accretion disk" around the neutron star, blocking the pulsar's radio waves. As the flow of material from the companion decreased and then stopped, the radio waves would reappear, and the object could be recognised as a pulsar. PSR J1023+0038 was found in a 2007 observation with the US National Radio Astronomy Observatory (NRAO) Robert C. Byrd Green Bank Telescope (GBT) during a survey led by NRAO and West Virginia University. CSIRO's Parkes telescope was used to get the first full-orbit observations of the pulsar, which helped to characterise the pulsar's properties. When astronomers looked at earlier records, they found that a Sun-like star – the pulsar's companion – had been seen by the Sloan Digital Sky Survey at the same location in 1999, and the system had been observed in the radio by the NRAO's Very Large Array telescope in 1998. When observed again with optical telescopes in 2000, the system had shown clear evidence of an "accretion disk" around the neutron star. But by May 2002, the evidence for this disk had disappeared. "This strange behaviour puzzled astronomers, and there were several different theories for what the object could be," said University of British Columbia team member Ingrid Stairs, who is on sabbatical in Australia visiting CSIRO and Swinburne University of Technology.

"This system gives us an unparalleled 'cosmic laboratory' for studying how millisecond pulsars evolve."

But now, after observations with several radio telescopes, the pieces of the puzzle have fallen into place. "No other millisecond pulsar has ever shown evidence of an accretion disk," said Ms Archibald said. Other major contributors to this study include Dr Maura McLaughlin and Dr Duncan Lorimer of West Virginia University and Dr Scott Ransom of NRAO. In addition to the Parkes telescope and the GBT, the scientists also used the Westerbork radio telescope in the Netherlands and the Arecibo radio telescope in Puerto Rico.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>