Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers catch a star being revved-up

26.05.2009
Researchers have witnessed a star being transformed into an object that spins at almost 600 times a second using telescopes in the USA and the Netherlands, and CSIRO's Parkes telescope in Australia.

The work, which is published online in Science Express on 21 May, was undertaken by an international team led by PhD student Anne Archibald and her supervisor, Professor Victoria Kaspi of McGill University in Montreal, Canada.

"This object, called PSR J1023+0038, is a millisecond pulsar, a condensed star about the size of a major city," said CSIRO's Australia Telescope National Facility researcher Dr David Champion.

"It's now revolving at 592 times a second, which means it's one of the fastest spinning objects we know." PSR J1023+0038 lies 4000 light-years from Earth in the constellation Sextans.

Pulsars are superdense neutron stars, the squashed-in cores of massive stars that have exploded. We detect them by the beams of radio waves they emit, which sweep over Earth like a lighthouse beam as the pulsar rotates.

A teaspoon of neutron-star material has a mass of about a billion tonnes.

Most pulsars spin relatively slowly, a few to tens of times a second, but the "millisecond pulsars" scream along, rotating hundreds of times a second. Astronomers have long thought that millisecond pulsars are ordinary pulsars "spun up" with the help of an orbiting companion star. The companion dumps matter onto the pulsar, causing it to spin far faster. The material from the companion would form a flat, spinning "accretion disk" around the neutron star, blocking the pulsar's radio waves. As the flow of material from the companion decreased and then stopped, the radio waves would reappear, and the object could be recognised as a pulsar. PSR J1023+0038 was found in a 2007 observation with the US National Radio Astronomy Observatory (NRAO) Robert C. Byrd Green Bank Telescope (GBT) during a survey led by NRAO and West Virginia University. CSIRO's Parkes telescope was used to get the first full-orbit observations of the pulsar, which helped to characterise the pulsar's properties. When astronomers looked at earlier records, they found that a Sun-like star – the pulsar's companion – had been seen by the Sloan Digital Sky Survey at the same location in 1999, and the system had been observed in the radio by the NRAO's Very Large Array telescope in 1998. When observed again with optical telescopes in 2000, the system had shown clear evidence of an "accretion disk" around the neutron star. But by May 2002, the evidence for this disk had disappeared. "This strange behaviour puzzled astronomers, and there were several different theories for what the object could be," said University of British Columbia team member Ingrid Stairs, who is on sabbatical in Australia visiting CSIRO and Swinburne University of Technology.

"This system gives us an unparalleled 'cosmic laboratory' for studying how millisecond pulsars evolve."

But now, after observations with several radio telescopes, the pieces of the puzzle have fallen into place. "No other millisecond pulsar has ever shown evidence of an accretion disk," said Ms Archibald said. Other major contributors to this study include Dr Maura McLaughlin and Dr Duncan Lorimer of West Virginia University and Dr Scott Ransom of NRAO. In addition to the Parkes telescope and the GBT, the scientists also used the Westerbork radio telescope in the Netherlands and the Arecibo radio telescope in Puerto Rico.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>