Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers catch a star being revved-up

26.05.2009
Researchers have witnessed a star being transformed into an object that spins at almost 600 times a second using telescopes in the USA and the Netherlands, and CSIRO's Parkes telescope in Australia.

The work, which is published online in Science Express on 21 May, was undertaken by an international team led by PhD student Anne Archibald and her supervisor, Professor Victoria Kaspi of McGill University in Montreal, Canada.

"This object, called PSR J1023+0038, is a millisecond pulsar, a condensed star about the size of a major city," said CSIRO's Australia Telescope National Facility researcher Dr David Champion.

"It's now revolving at 592 times a second, which means it's one of the fastest spinning objects we know." PSR J1023+0038 lies 4000 light-years from Earth in the constellation Sextans.

Pulsars are superdense neutron stars, the squashed-in cores of massive stars that have exploded. We detect them by the beams of radio waves they emit, which sweep over Earth like a lighthouse beam as the pulsar rotates.

A teaspoon of neutron-star material has a mass of about a billion tonnes.

Most pulsars spin relatively slowly, a few to tens of times a second, but the "millisecond pulsars" scream along, rotating hundreds of times a second. Astronomers have long thought that millisecond pulsars are ordinary pulsars "spun up" with the help of an orbiting companion star. The companion dumps matter onto the pulsar, causing it to spin far faster. The material from the companion would form a flat, spinning "accretion disk" around the neutron star, blocking the pulsar's radio waves. As the flow of material from the companion decreased and then stopped, the radio waves would reappear, and the object could be recognised as a pulsar. PSR J1023+0038 was found in a 2007 observation with the US National Radio Astronomy Observatory (NRAO) Robert C. Byrd Green Bank Telescope (GBT) during a survey led by NRAO and West Virginia University. CSIRO's Parkes telescope was used to get the first full-orbit observations of the pulsar, which helped to characterise the pulsar's properties. When astronomers looked at earlier records, they found that a Sun-like star – the pulsar's companion – had been seen by the Sloan Digital Sky Survey at the same location in 1999, and the system had been observed in the radio by the NRAO's Very Large Array telescope in 1998. When observed again with optical telescopes in 2000, the system had shown clear evidence of an "accretion disk" around the neutron star. But by May 2002, the evidence for this disk had disappeared. "This strange behaviour puzzled astronomers, and there were several different theories for what the object could be," said University of British Columbia team member Ingrid Stairs, who is on sabbatical in Australia visiting CSIRO and Swinburne University of Technology.

"This system gives us an unparalleled 'cosmic laboratory' for studying how millisecond pulsars evolve."

But now, after observations with several radio telescopes, the pieces of the puzzle have fallen into place. "No other millisecond pulsar has ever shown evidence of an accretion disk," said Ms Archibald said. Other major contributors to this study include Dr Maura McLaughlin and Dr Duncan Lorimer of West Virginia University and Dr Scott Ransom of NRAO. In addition to the Parkes telescope and the GBT, the scientists also used the Westerbork radio telescope in the Netherlands and the Arecibo radio telescope in Puerto Rico.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>