Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers catch a star being revved-up

Researchers have witnessed a star being transformed into an object that spins at almost 600 times a second using telescopes in the USA and the Netherlands, and CSIRO's Parkes telescope in Australia.

The work, which is published online in Science Express on 21 May, was undertaken by an international team led by PhD student Anne Archibald and her supervisor, Professor Victoria Kaspi of McGill University in Montreal, Canada.

"This object, called PSR J1023+0038, is a millisecond pulsar, a condensed star about the size of a major city," said CSIRO's Australia Telescope National Facility researcher Dr David Champion.

"It's now revolving at 592 times a second, which means it's one of the fastest spinning objects we know." PSR J1023+0038 lies 4000 light-years from Earth in the constellation Sextans.

Pulsars are superdense neutron stars, the squashed-in cores of massive stars that have exploded. We detect them by the beams of radio waves they emit, which sweep over Earth like a lighthouse beam as the pulsar rotates.

A teaspoon of neutron-star material has a mass of about a billion tonnes.

Most pulsars spin relatively slowly, a few to tens of times a second, but the "millisecond pulsars" scream along, rotating hundreds of times a second. Astronomers have long thought that millisecond pulsars are ordinary pulsars "spun up" with the help of an orbiting companion star. The companion dumps matter onto the pulsar, causing it to spin far faster. The material from the companion would form a flat, spinning "accretion disk" around the neutron star, blocking the pulsar's radio waves. As the flow of material from the companion decreased and then stopped, the radio waves would reappear, and the object could be recognised as a pulsar. PSR J1023+0038 was found in a 2007 observation with the US National Radio Astronomy Observatory (NRAO) Robert C. Byrd Green Bank Telescope (GBT) during a survey led by NRAO and West Virginia University. CSIRO's Parkes telescope was used to get the first full-orbit observations of the pulsar, which helped to characterise the pulsar's properties. When astronomers looked at earlier records, they found that a Sun-like star – the pulsar's companion – had been seen by the Sloan Digital Sky Survey at the same location in 1999, and the system had been observed in the radio by the NRAO's Very Large Array telescope in 1998. When observed again with optical telescopes in 2000, the system had shown clear evidence of an "accretion disk" around the neutron star. But by May 2002, the evidence for this disk had disappeared. "This strange behaviour puzzled astronomers, and there were several different theories for what the object could be," said University of British Columbia team member Ingrid Stairs, who is on sabbatical in Australia visiting CSIRO and Swinburne University of Technology.

"This system gives us an unparalleled 'cosmic laboratory' for studying how millisecond pulsars evolve."

But now, after observations with several radio telescopes, the pieces of the puzzle have fallen into place. "No other millisecond pulsar has ever shown evidence of an accretion disk," said Ms Archibald said. Other major contributors to this study include Dr Maura McLaughlin and Dr Duncan Lorimer of West Virginia University and Dr Scott Ransom of NRAO. In addition to the Parkes telescope and the GBT, the scientists also used the Westerbork radio telescope in the Netherlands and the Arecibo radio telescope in Puerto Rico.

Helen Sim | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>