Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers catch a star being revved-up

26.05.2009
Researchers have witnessed a star being transformed into an object that spins at almost 600 times a second using telescopes in the USA and the Netherlands, and CSIRO's Parkes telescope in Australia.

The work, which is published online in Science Express on 21 May, was undertaken by an international team led by PhD student Anne Archibald and her supervisor, Professor Victoria Kaspi of McGill University in Montreal, Canada.

"This object, called PSR J1023+0038, is a millisecond pulsar, a condensed star about the size of a major city," said CSIRO's Australia Telescope National Facility researcher Dr David Champion.

"It's now revolving at 592 times a second, which means it's one of the fastest spinning objects we know." PSR J1023+0038 lies 4000 light-years from Earth in the constellation Sextans.

Pulsars are superdense neutron stars, the squashed-in cores of massive stars that have exploded. We detect them by the beams of radio waves they emit, which sweep over Earth like a lighthouse beam as the pulsar rotates.

A teaspoon of neutron-star material has a mass of about a billion tonnes.

Most pulsars spin relatively slowly, a few to tens of times a second, but the "millisecond pulsars" scream along, rotating hundreds of times a second. Astronomers have long thought that millisecond pulsars are ordinary pulsars "spun up" with the help of an orbiting companion star. The companion dumps matter onto the pulsar, causing it to spin far faster. The material from the companion would form a flat, spinning "accretion disk" around the neutron star, blocking the pulsar's radio waves. As the flow of material from the companion decreased and then stopped, the radio waves would reappear, and the object could be recognised as a pulsar. PSR J1023+0038 was found in a 2007 observation with the US National Radio Astronomy Observatory (NRAO) Robert C. Byrd Green Bank Telescope (GBT) during a survey led by NRAO and West Virginia University. CSIRO's Parkes telescope was used to get the first full-orbit observations of the pulsar, which helped to characterise the pulsar's properties. When astronomers looked at earlier records, they found that a Sun-like star – the pulsar's companion – had been seen by the Sloan Digital Sky Survey at the same location in 1999, and the system had been observed in the radio by the NRAO's Very Large Array telescope in 1998. When observed again with optical telescopes in 2000, the system had shown clear evidence of an "accretion disk" around the neutron star. But by May 2002, the evidence for this disk had disappeared. "This strange behaviour puzzled astronomers, and there were several different theories for what the object could be," said University of British Columbia team member Ingrid Stairs, who is on sabbatical in Australia visiting CSIRO and Swinburne University of Technology.

"This system gives us an unparalleled 'cosmic laboratory' for studying how millisecond pulsars evolve."

But now, after observations with several radio telescopes, the pieces of the puzzle have fallen into place. "No other millisecond pulsar has ever shown evidence of an accretion disk," said Ms Archibald said. Other major contributors to this study include Dr Maura McLaughlin and Dr Duncan Lorimer of West Virginia University and Dr Scott Ransom of NRAO. In addition to the Parkes telescope and the GBT, the scientists also used the Westerbork radio telescope in the Netherlands and the Arecibo radio telescope in Puerto Rico.

Helen Sim | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>