Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers capture a rare stellar eclipse in opening scene of year-long show

08.04.2010
Ground-based CHARA Array enables unprecedented images of a double star system some 2,000 light years from Earth

For the first time, a team of astronomers has imaged the eclipse of the star Epsilon Aurigae by its mysterious, less luminous companion star. Very high-resolution images, never before possible, have been published online today in the journal Nature Letters.

Epsilon Aurigae has been known since 1821 as an eclipsing double star system, but astronomers have struggled for many decades trying to decipher the clues to what was causing these eclipses, which happen every 27 years. The new image largely settles the matter: the eclipse is caused by a disk of material, probably similar to the state of our solar system 4.5 billion years ago as the planets began to form around our own infant sun.

The research team includes astronomers from the University of Denver, the University of Michigan, and Georgia State University with Denver graduate student Brian Kloppenborg serving as the first author on the Nature Letters paper.

Seeing this eclipse in detail has only now become possible. Kloppenberg's research advisor, University of Denver Professor Robert Stencel, describes this long-awaited discovery, "Having studied this star on and off since my postdoctoral days in the 1980s during its last eclipse, it is very satisfying to finally resolve some of the long-standing questions associated with this famous star."

The image was obtained using the interferometric technique, an old idea that incorporates computer control and laser connections among multiple telescopes to achieve signal equivalent to one giant telescope.

"To capture the detail on Epsilon Aurigae, we've made use of the biggest optical telescope on earth, the 330-meter (1,083 feet) diameter CHARA Array atop Mount Wilson, California," said Kloppenborg. To comprehend its size, note that 100 meters (328 feet) is roughly the length of a football field.

The CHARA Array is a collection of six telescopes, spread out over the grounds of Mount Wilson Observatory, in which individual beams of light are brought together using extraordinarily precise beam combiners to synthesize a giant telescope hundreds of meters across. The array is owned by Georgia State University (GSU) and operated by GSU's Center for High Angular Resolution Astronomy. In routine operations since 2005, the CHARA Array has already produced a number of astronomical "firsts" though its ability to produce images of unprecedented resolution.

CHARA Director and GSU Regents' Professor Harold McAlister noted, "The size of Epsilon Aurigae in these amazing new images is equivalent to the angular size of an 11-point font letter 'o' seen from a distance of more than 150 kilometers (93 miles)."

Key to the imaging success of the CHARA Array is the Michigan Infrared Combiner (MIRC), created by University of Michigan Professor John Monnier. MIRC enables the type of multi-telescope linkage that is required to produce such images and enables more of the potential of CHARA to be used in parallel for image reconstruction. The combination of MIRC at CHARA has already produced the first image ever made of a normal star other than the sun, as well as the first images of a double star system in which one component is shedding matter to its companion star.

The images of Epsilon Aurigae show the intrusion of an apparently wedge-shaped structure across the face of a huge star, nearly 150 times the size of our sun. The images of the star and wedge-shaped structure show the direct motion over a month, yielding a measurement of the relative masses of the components. The primary star itself is thought to be in a very interesting phase of its own evolution, turning out to be less massive than the eclipsing disk and the star hidden at the center of that disk.

Independently, Stencel and collaborators from the California Institute of Technology and Kitt Peak National Observatory had assembled data to show the disk contains a large, hot star known as a B5V object, describing its mass and temperature. This prior work set the stage to then evaluate the mass of the disk itself, based on the CHARA images.

It turns out the disk is as wide as the orbit of Jupiter, nearly as tall as the orbit of Earth, but contains a little less than the mass of Earth altogether. "This is a fairly direct measurement of characteristics of a disk, in contrast to the usual disk studies where indirect evidence and lots of assumptions are the only means of characterization available. With some luck, we can obtain more CHARA images this year and develop the equivalent of an MRI scan of the entire disk through eclipse," noted Stencel.

Because astronomers hadn't observed much light from the faint companion, the prevailing opinion labeled it a smaller star orbited edge-on by a thick disk of dust. The theory held that the disk's orbit must be in precisely the same plane as the dark object's orbit around the brighter star, and all of this had to be occurring in the same plane as Earth's vantage point. This would be an unlikely alignment, but it explained observations. The new images show that this is indeed the case. A geometrically-thin, dark, dense, but partially-translucent cloud can be seen passing in front of Epsilon Aurigae.

"This really shows that the basic paradigm was right, despite the slim probability," Monnier said. "It kind of blows my mind that we could capture this. There's no other system like this known. On top of that, it seems to be in a rare phase of stellar life. And it happens to be so close to us! It's extremely fortuitous."

The star began its current eclipse during late summer 2009, seemingly affecting us on Earth as well. Stencel and Kloppenborg had applied for CHARA observing time earlier that year. While waiting for the star to become well-placed in the nighttime sky, Mother Nature had other plans: the Station Fire broke out in the San Gabriel Mountains around Mount Wilson in late August 2009, consuming hundreds of thousands of acres of National Forest over several weeks and shutting down operations at the observatory.

For weeks thereafter, access to Mount Wilson was closed to all, and only with great fortune were the November and December 2009 observations accomplished. Not long after that, in early 2010, with the arrival of the rainy season, extensive mudslides destroyed sections of the access road to Mount Wilson. Despite the challenges, with road repairs underway, there is hope for more observations during this rare but long eclipse, which will last for the rest of 2010.

"We have witnessed the initial phases of this eclipse, and we certainly don't want to miss the rest of the show," said Kloppenborg.

The National Science Foundation has supported this research through separate grants to the University of Denver, the University of Michigan and Georgia State University. The CHARA Array was constructed with funding from the National Science Foundation, the W. M. Keck Foundation, the David and Lucile Packard Foundation and Georgia State University.

Lisa Joy-Zgorski | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>