Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers’ Camera Reveals Early Galaxies

13.01.2011
An international team of astronomers including Grant Wilson and Min Yun at the University of Massachusetts Amherst has detected one of the earliest “protoclusters” of galaxies ever identified, located about 12.5 billion light years from Earth. Wilson and Yun are part of a group led by Peter Capak of the California Institute of Technology. Their findings appear in the current issue of Nature.

The protocluster of very early galaxies is centered on a source dubbed AzTEC 3, after the millimeter-wave instrument that first saw it. The full collection of galaxies, called the COSMOS-AzTEC protocluster, has been caught in the act of formation when the universe was only 1 billion years old.

Wilson says the observation is surprising because current theory suggests finding such a nascent congregation or cluster of galaxies in the early stages of formation should be very difficult. “Clusters, which are some of the biggest structures in the universe, are relatively rare. If galaxies spread through the universe are like towns dotting the Earth, fully grown clusters would be like the biggest cities,” he notes.

He likens discovery of the COSMOS-AzTEC protocluster to peering at the first houses on Manhattan Island, destined to be among the most populous places on the planet. Because light from such distant objects takes so long to reach Earth, astronomers are essentially looking back in time at the early days of an object which someday will be one of the most massive in the universe.

AzTEC 3 was one of the very first objects discovered by the team using the AzTEC camera and one of the first few AzTEC galaxies to be followed up with detailed scrutiny by other telescopes.

What are the chances of detecting something as important and rare as one of the earliest-known protoclusters in the universe on the first try? As Wilson sees it, “We either got extremely lucky, or the universe biased our search and provided a signpost, like the tip of an iceberg sticking up out of the sea, that attracted our attention. Because they are monstrously huge and unusual, I think it may not be so crazy to think that galaxies like AzTEC 3 tend to exist in special places in the universe and we just don’t understand the signpost yet. That’s one thing we’ll definitely be looking to explain in the future.”

Most astronomers believe that such a massive cluster should not be mature until 2 to 3 billion years later, Wilson’s UMass Amherst colleague Yun explains. “Such a young cluster is really interesting. The current computer simulations of the universe suggest that we were extremely fortunate to find it.”

The astronomers focused their hunt for a protocluster at the location of one of the first galaxies discovered by the AzTEC camera. “AzTEC 3, at the heart of the cluster is a fairly rare, and really massive, type of galaxy called a starburst—an incredibly prolific producer of new stars. Judging by the brightness of its millimeter-wave signature, AzTEC 3 must be producing about 1,000 new stars every year, compared to the one to three new stars produced by the Milky Way annually,” Wilson points out.

In addition to AzTEC 3, the COSMOS-AzTEC protocluster also contains a super massive black hole and several other interesting galaxies. “It’s a real collection of odd and intriguing sources, all congregating when the universe was in its infancy,” says Yun.

At UMass Amherst, Wilson led a team of international astronomers who designed and built AzTEC, the special millimeter wave-detecting camera, which is about the size and shape of a 55-gallon drum. It can collect images of thermal radiation emitted from distant galaxies that are filled with dust created by the formation and death of stars.

Some galaxies, such as AzTEC 3, have so much dust that most of the light they emit is trapped, unable to penetrate the cocoon of dust surrounding them. This makes them nearly invisible even to the most powerful optical instruments such as the Hubble Space Telescope. The active formation of stars heats this dust which then glows like embers in a fireplace. AzTEC is able to take pictures of that glow. “We call this star formation starbursting because it’s thought to be a rather violent and short-lived phase, about 50 million years, in the galaxy’s life,” Wilson says.

Capak, Wilson and colleagues first used the AzTEC camera to identify candidate dusty starburst galaxies, and then followed up with observations at the Submillimeter Telescope Array and the Keck 10-meter optical telescopes on Mauna Kea, Hawaii, to measure the galaxies’ emission lines, or red shift. This measure yields the age of the universe at the time the galaxies emitted their light, in this case estimated at 1 billion years.

AzTEC, the UMass Amherst instrument, was funded in part by the National Science Foundation. It will be installed at the Large Millimeter Telescope, a 50-meter millimeter-wavelength telescope in Mexico expected to be completed in mid-2011.

Grant Wilson | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>