Astronomer to Study Stars with Data from NASA’s Kepler Mission

Kawaler, an Iowa State University professor of physics and astronomy, plans to celebrate the new research program by witnessing the mission’s launch in early March (the National Aeronautics and Space Administration says the mission is currently scheduled to launch on March 5) at Cape Canaveral Air Force Station in Florida.

The mission has a lot for astronomers to get excited about.

Looking for planets that could support life was “the stuff that got me interested in astronomy when I was a kid,” Kawaler said.

And he said the mission’s space telescope will do a lot to advance his research of stars and their interiors.

“We’ve been doing this work the hard way – from the earth, which is a spinning platform,” Kawaler said.

To overcome the Earth’s rotation, a research collaboration called the Whole Earth Telescope was established in 1986 to coordinate star observations and share data. Kawaler, who has served as director of the project, said even a whole-earth collaboration has significant limits.

Weather can get in the way of observations and data collection. No two telescopes are exactly the same and so produce subtly different data sets. Ground measurements can’t be as precise as measurements from space. And funding hasn’t been available to do observations for more than a few weeks at a time.

“Kepler will do this the right way,” Kawaler said. “Kepler will give us a huge amount of data. About 170,000 stars will be observed every half hour, continuously, for three and a half years or more.”

The Kepler mission will launch a CCD photometer (the equivalent of a 95 megapixel camera) into space. The instrument will use an aperture that’s nearly one meter in diameter to collect data about the Cygnus-Lyra region of the galaxy. Its primary job is to find any variations in the brightness of the stars within its view.

Tiny dips in brightness can signal a planet passing in front of its star. Scientists at NASA’s Ames Research Center in California will lead a team studying those planetary transits. Data from the transits can reveal the planet’s size, orbit and temperature. That will allow researchers to find earth-sized planets that orbit within the habitable zone of their stars.

Another team of researchers – the Kepler Asteroseismic Science Consortium – will use the same data to study the internal structure of stars. The consortium is led by Jorgen Christensen-Dalsgaard and Hans Kjeldsen of Aarhus University in Aarhus, Denmark, and Kawaler serves on the project’s 12-member steering committee.

The consortium will study how the spheres of gas that make up stars oscillate and change brightness. Studies of those star quakes can answer questions about the interior properties of stars such as their density, temperature and composition. It’s similar to how geologists study earthquakes to learn about the Earth’s interior.

Consortium scientists will also use the data to measure the exact sizes of stars with earth-like planets.

The scientists should begin seeing new data about 90 days after Kepler’s launch.

Kawaler is looking forward to seeing where the new information takes researchers.

“Fifteen years ago we knew of one planetary system,” he said. “Now we know of 300-plus, but only one Earth. This is our chance to find dozens of other Earths.”

Media Contact

Steve Kawaler Newswise Science News

More Information:

http://www.iastate.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors