Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomer to Study Stars with Data from NASA’s Kepler Mission

11.02.2009
NASA’s Kepler Mission will be the first attempt to look for earth-like planets in our part of the Milky Way. It will also be the first chance for astronomers such as Steve Kawaler to get a much closer look at the stars they study.

Kawaler, an Iowa State University professor of physics and astronomy, plans to celebrate the new research program by witnessing the mission’s launch in early March (the National Aeronautics and Space Administration says the mission is currently scheduled to launch on March 5) at Cape Canaveral Air Force Station in Florida.

The mission has a lot for astronomers to get excited about.

Looking for planets that could support life was “the stuff that got me interested in astronomy when I was a kid,” Kawaler said.

And he said the mission’s space telescope will do a lot to advance his research of stars and their interiors.

“We’ve been doing this work the hard way – from the earth, which is a spinning platform,” Kawaler said.

To overcome the Earth’s rotation, a research collaboration called the Whole Earth Telescope was established in 1986 to coordinate star observations and share data. Kawaler, who has served as director of the project, said even a whole-earth collaboration has significant limits.

Weather can get in the way of observations and data collection. No two telescopes are exactly the same and so produce subtly different data sets. Ground measurements can’t be as precise as measurements from space. And funding hasn’t been available to do observations for more than a few weeks at a time.

“Kepler will do this the right way,” Kawaler said. “Kepler will give us a huge amount of data. About 170,000 stars will be observed every half hour, continuously, for three and a half years or more.”

The Kepler mission will launch a CCD photometer (the equivalent of a 95 megapixel camera) into space. The instrument will use an aperture that’s nearly one meter in diameter to collect data about the Cygnus-Lyra region of the galaxy. Its primary job is to find any variations in the brightness of the stars within its view.

Tiny dips in brightness can signal a planet passing in front of its star. Scientists at NASA’s Ames Research Center in California will lead a team studying those planetary transits. Data from the transits can reveal the planet’s size, orbit and temperature. That will allow researchers to find earth-sized planets that orbit within the habitable zone of their stars.

Another team of researchers – the Kepler Asteroseismic Science Consortium – will use the same data to study the internal structure of stars. The consortium is led by Jorgen Christensen-Dalsgaard and Hans Kjeldsen of Aarhus University in Aarhus, Denmark, and Kawaler serves on the project’s 12-member steering committee.

The consortium will study how the spheres of gas that make up stars oscillate and change brightness. Studies of those star quakes can answer questions about the interior properties of stars such as their density, temperature and composition. It’s similar to how geologists study earthquakes to learn about the Earth’s interior.

Consortium scientists will also use the data to measure the exact sizes of stars with earth-like planets.

The scientists should begin seeing new data about 90 days after Kepler’s launch.

Kawaler is looking forward to seeing where the new information takes researchers.

“Fifteen years ago we knew of one planetary system,” he said. “Now we know of 300-plus, but only one Earth. This is our chance to find dozens of other Earths.”

Steve Kawaler | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

nachricht Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>