Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomer to Study Stars with Data from NASA’s Kepler Mission

11.02.2009
NASA’s Kepler Mission will be the first attempt to look for earth-like planets in our part of the Milky Way. It will also be the first chance for astronomers such as Steve Kawaler to get a much closer look at the stars they study.

Kawaler, an Iowa State University professor of physics and astronomy, plans to celebrate the new research program by witnessing the mission’s launch in early March (the National Aeronautics and Space Administration says the mission is currently scheduled to launch on March 5) at Cape Canaveral Air Force Station in Florida.

The mission has a lot for astronomers to get excited about.

Looking for planets that could support life was “the stuff that got me interested in astronomy when I was a kid,” Kawaler said.

And he said the mission’s space telescope will do a lot to advance his research of stars and their interiors.

“We’ve been doing this work the hard way – from the earth, which is a spinning platform,” Kawaler said.

To overcome the Earth’s rotation, a research collaboration called the Whole Earth Telescope was established in 1986 to coordinate star observations and share data. Kawaler, who has served as director of the project, said even a whole-earth collaboration has significant limits.

Weather can get in the way of observations and data collection. No two telescopes are exactly the same and so produce subtly different data sets. Ground measurements can’t be as precise as measurements from space. And funding hasn’t been available to do observations for more than a few weeks at a time.

“Kepler will do this the right way,” Kawaler said. “Kepler will give us a huge amount of data. About 170,000 stars will be observed every half hour, continuously, for three and a half years or more.”

The Kepler mission will launch a CCD photometer (the equivalent of a 95 megapixel camera) into space. The instrument will use an aperture that’s nearly one meter in diameter to collect data about the Cygnus-Lyra region of the galaxy. Its primary job is to find any variations in the brightness of the stars within its view.

Tiny dips in brightness can signal a planet passing in front of its star. Scientists at NASA’s Ames Research Center in California will lead a team studying those planetary transits. Data from the transits can reveal the planet’s size, orbit and temperature. That will allow researchers to find earth-sized planets that orbit within the habitable zone of their stars.

Another team of researchers – the Kepler Asteroseismic Science Consortium – will use the same data to study the internal structure of stars. The consortium is led by Jorgen Christensen-Dalsgaard and Hans Kjeldsen of Aarhus University in Aarhus, Denmark, and Kawaler serves on the project’s 12-member steering committee.

The consortium will study how the spheres of gas that make up stars oscillate and change brightness. Studies of those star quakes can answer questions about the interior properties of stars such as their density, temperature and composition. It’s similar to how geologists study earthquakes to learn about the Earth’s interior.

Consortium scientists will also use the data to measure the exact sizes of stars with earth-like planets.

The scientists should begin seeing new data about 90 days after Kepler’s launch.

Kawaler is looking forward to seeing where the new information takes researchers.

“Fifteen years ago we knew of one planetary system,” he said. “Now we know of 300-plus, but only one Earth. This is our chance to find dozens of other Earths.”

Steve Kawaler | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>