Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomer Is Part of Team to Make First Detection of UV Emission from Hydrogen in Milky Way Galaxy

06.12.2011
Jean-Loup Bertaux, a researcher at Boston University¡¯s Center for Space Physics, is a member of an international team of astronomers who have detected for the first time ultraviolet (UV) emissions of neutral hydrogen within the Earth¡¯s own galaxy, the Milky Way. Although hydrogen is the most abundant element in the universe, the so-called Lyman alpha emission of Hydrogen, lying at far UV wavelengths, had up to now escaped detection in the vicinity of the Solar System.
The findings were published in the December 2, 2011 issue of the journal Science in an article titled ¡°Voyager Measurements of Hydrogen Lyman-¦Á Diffuse Emission from the Milky Way.¡±

(http://www.sciencemag.org/content/early/2011/11/30/science.1197340.abstract)

The authors, lead by Rosine Lallement, research scientist at the GEPI-CNRS/Paris Observatory (GEPI¨CCNRS/Observatoire de Paris/Universit¨¦ Paris Diderot)) base their study on an analysis of data from NASA¡¯s Voyager 1 and Voyager 2 space probes. As a result of these findings, it now will be possible to test locally (within the Milky Way galaxy) models designed to measure of the same types of emissions that are observed in distant galaxies.

Lyman alpha emissions, with a wavelength of 121.6 nanometers, are the principal signature of hydrogen atoms in the universe and are used as indicators of the formation of stars in galaxies shortly after the Big Bang (the primordial universe). However, because these emissions are at the ultraviolet end of the spectrum, they are completely obscured by the earth¡¯s atmosphere and the proximity of the Sun, which is composed primarily of hydrogen and produces an intense flux of ultraviolet photons. As the two Voyager probes moved farther and farther from the Sun¡ªfrom 1993 to 2003, they travelled between six and 13 billion kilometers (40 to 90 Astronomical Units) from the Sun¡ªthe glow of local Lyman alpha emissions in the vicinity of the probes has become easier to detect, growing 20 times more intense than if observed from Earth orbit.

Lallement¡¯s team of researchers used the residual ultraviolet light detected by the Voyager probes to develop a theoretical model of the interplanetary glow observable in the sky. The model makes it possible to measure the slight excess radiance in the direction of the Milky Way, which correlates with the ¡°red¡± radiance (H alpha with a wavelength of 656.3 nanometers) that is characteristic of the regions that surround young, hot stars. As a result, astronomers on Earth will be able to test models that have been developed to interpret observations of the Lyman alpha emission from very distant galaxies, where the emission is associated with the first bursts of forming stars.

Much of what is known about the distant universe is based on measurements of the Lyman alpha emission from distant galaxies, and some of these distant galaxies are detected only from this emission. This new model should help astronomers formulate a better understanding of the behavior of distant galaxies.

About Boston University¡ªFounded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University¡¯s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University¡¯s reputation for teaching and research.

Contact information for the authors:

In the USA:

Jean-Loup Bertaux
Center for Space Physics
Boston University
725 Commonwealth Ave.
Boston, MA 02215
USA
Phone: +1-617-358-5942
Email: www.bu.edu/dbin/csp or Jean-Loup.Bertaux@aerov.jussieu.fr
In Europe:
Chercheur
Roseline Lallement
T 0145 07 78 30/06 85 10 01 97
Rosine.lallement@obspm.fr
Presse
Laetitia Louis
T 01 44 96 51 37
Laetitia.louis@cnrs-dir.fr

Laetitia Louis | Newswise Science News
Further information:
http://www.cnrs-dir.fr
http://www.bu.edu/dbin/csp

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>