Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomer Is Part of Team to Make First Detection of UV Emission from Hydrogen in Milky Way Galaxy

06.12.2011
Jean-Loup Bertaux, a researcher at Boston University¡¯s Center for Space Physics, is a member of an international team of astronomers who have detected for the first time ultraviolet (UV) emissions of neutral hydrogen within the Earth¡¯s own galaxy, the Milky Way. Although hydrogen is the most abundant element in the universe, the so-called Lyman alpha emission of Hydrogen, lying at far UV wavelengths, had up to now escaped detection in the vicinity of the Solar System.
The findings were published in the December 2, 2011 issue of the journal Science in an article titled ¡°Voyager Measurements of Hydrogen Lyman-¦Á Diffuse Emission from the Milky Way.¡±

(http://www.sciencemag.org/content/early/2011/11/30/science.1197340.abstract)

The authors, lead by Rosine Lallement, research scientist at the GEPI-CNRS/Paris Observatory (GEPI¨CCNRS/Observatoire de Paris/Universit¨¦ Paris Diderot)) base their study on an analysis of data from NASA¡¯s Voyager 1 and Voyager 2 space probes. As a result of these findings, it now will be possible to test locally (within the Milky Way galaxy) models designed to measure of the same types of emissions that are observed in distant galaxies.

Lyman alpha emissions, with a wavelength of 121.6 nanometers, are the principal signature of hydrogen atoms in the universe and are used as indicators of the formation of stars in galaxies shortly after the Big Bang (the primordial universe). However, because these emissions are at the ultraviolet end of the spectrum, they are completely obscured by the earth¡¯s atmosphere and the proximity of the Sun, which is composed primarily of hydrogen and produces an intense flux of ultraviolet photons. As the two Voyager probes moved farther and farther from the Sun¡ªfrom 1993 to 2003, they travelled between six and 13 billion kilometers (40 to 90 Astronomical Units) from the Sun¡ªthe glow of local Lyman alpha emissions in the vicinity of the probes has become easier to detect, growing 20 times more intense than if observed from Earth orbit.

Lallement¡¯s team of researchers used the residual ultraviolet light detected by the Voyager probes to develop a theoretical model of the interplanetary glow observable in the sky. The model makes it possible to measure the slight excess radiance in the direction of the Milky Way, which correlates with the ¡°red¡± radiance (H alpha with a wavelength of 656.3 nanometers) that is characteristic of the regions that surround young, hot stars. As a result, astronomers on Earth will be able to test models that have been developed to interpret observations of the Lyman alpha emission from very distant galaxies, where the emission is associated with the first bursts of forming stars.

Much of what is known about the distant universe is based on measurements of the Lyman alpha emission from distant galaxies, and some of these distant galaxies are detected only from this emission. This new model should help astronomers formulate a better understanding of the behavior of distant galaxies.

About Boston University¡ªFounded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University¡¯s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University¡¯s reputation for teaching and research.

Contact information for the authors:

In the USA:

Jean-Loup Bertaux
Center for Space Physics
Boston University
725 Commonwealth Ave.
Boston, MA 02215
USA
Phone: +1-617-358-5942
Email: www.bu.edu/dbin/csp or Jean-Loup.Bertaux@aerov.jussieu.fr
In Europe:
Chercheur
Roseline Lallement
T 0145 07 78 30/06 85 10 01 97
Rosine.lallement@obspm.fr
Presse
Laetitia Louis
T 01 44 96 51 37
Laetitia.louis@cnrs-dir.fr

Laetitia Louis | Newswise Science News
Further information:
http://www.cnrs-dir.fr
http://www.bu.edu/dbin/csp

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>