Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrobiologists Discover “Sweet Spots” for the Formation of Complex Organic Molecules in the Galaxy

04.11.2011
Scientists within the New York Center for Astrobiology at Rensselaer Polytechnic Institute have compiled years of research to help locate areas in outer space that have extreme potential for complex organic molecule formation.

The scientists searched for methanol, a key ingredient in the synthesis of organic molecules that could lead to life. Their results have implications for determining the origins of molecules that spark life in the cosmos.

The findings will be published in the Nov. 20 edition of The Astrophysical Journal in a paper titled “Observational constraints on methanol production in interstellar and preplanetary ices.” The work is collaboration between researchers at Rensselaer, NASA Ames Research Center, the SETI Institute, and Ohio State University.

“Methanol formation is the major chemical pathway to complex organic molecules in interstellar space,” said the lead researcher of the study and director of the NASA-funded center, Douglas Whittet of Rensselaer. If scientists can identify regions where conditions are right for rich methanol production, they will be better able to understand where and how the complex organic molecules needed to create life are formed. In other words, follow the methanol and you may be able to follow the chemistry that leads to life.

Using powerful telescopes on Earth, scientists have observed large concentrations of simple molecules such as carbon monoxide in the clouds that give birth to new stars. In order to make more complex organic molecules, hydrogen needs to enter the chemical process. The best way for this chemistry to occur is on the surfaces of tiny dust grains in space, according to Whittet. In the right conditions, carbon monoxide on the surface of interstellar dust can react at low temperatures with hydrogen to create methanol (CH3OH). Methanol then serves as an important steppingstone to formation of the much more complex organic molecules that are required to create life. Scientists have known that methanol is out there, but to date there has been limited detail on where it is most readily produced.

What Whittet and his collaborators have discovered is that methanol is most abundant around a very small number of newly formed stars. Not all young stars reach such potential for organic chemistry. In fact, the range in methanol concentration varies from negligible amounts in some regions of the interstellar medium to approximately 30 percent of the ices around a handful of newly formed stars. They also discovered methanol for the first time in low concentrations (1 to 2 percent) in the cold clouds that will eventually give birth to new stars.

The scientists conclude in the paper that there is a “sweet spot” in the physical conditions surrounding some stars that accounts for the large discrepancy in methanol formation in the galaxy. The complexity of the chemistry depends on how fast certain molecules reach the dust grains surrounding new stars, according the Whittet. The rate of molecule accumulation on the particles can result in an organic boom or a literal dead end.

“If the carbon monoxide molecules build up too quickly on the surfaces of the dust grains, they don’t get the opportunity to react and form more complex molecules. Instead, the molecules get buried in the ices and add up to a lot of dead weight,” Whittet said. “If the buildup is too slow, the opportunities for reaction are also much lower.”

This means that under the right conditions, the dust surrounding certain stars could hold greater potential for life than most of its siblings. The presence of high concentrations of methanol could essentially jumpstart the process to create life on the planets formed around certain stars.

The scientists also compared their results with methanol concentrations in comets to determine a baseline of methanol production in our own solar system.

“Comets are time capsules,” Whittet said. “Comets can preserve the early history of our solar system because they contain material that hasn’t changed since the solar system was formed.” As such, the scientists could look at the concentrations of methanol in comets to determine the amount of methanol that was in our solar system at its birth.

What they found was that methanol concentrations at the birth of our solar system were actually closer to the average of what they saw elsewhere in interstellar space. Methanol concentrations in our solar system were fairly low, at only a few percent, compared to some of the other methanol-dense areas in the galaxy observed by Whittet and his colleagues.

“This means that our solar system wasn’t particularly lucky and didn’t have the large amounts of methanol that we see around some other stars in the galaxy,” Whittet said.

“But, it was obviously enough for us to be here.”

The results suggest that there could be solar systems out there that were even luckier in the biological game than we were, according to Whittet. As we look deeper into the cosmos, we may eventually be able to determine what a solar system bursting with methanol can do.

The New York Center for Astrobiology
Based within the School of Science at Rensselaer Polytechnic Institute in Troy, N.Y., the New York Center for Astrobiology is devoted to investigating the origins of life on Earth and the conditions that lead to formation of habitable planets in our own and other solar systems. Supported by NASA, the $7 million center is a member of NASA’s Astrobiology Institute (NAI), and is a partnership between Rensselaer and the University at Albany, Syracuse University, the University of Arizona, and the University of North Dakota. Researchers and students within the center seek to understand the chemical, physical, and geological conditions of early Earth that set the stage for life on our planet. They also look beyond our home planet to investigate whether the processes that prepared the Earth for life could be replicated elsewhere — on Mars and other bodies in our solar system, for example, and on planets orbiting other stars.

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>