Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrobiologists: Deadly Arsenic Breathes Life Into Organisms

06.12.2010
Scientists ‘follow the elements’ in the hunt for ‘weird life’ on Earth

Evidence that the toxic element arsenic can replace the essential nutrient phosphorus in biomolecules of a naturally occurring bacterium expands the scope of the search for life beyond Earth, according to Arizona State University scientists who are part of a NASA-funded research team reporting findings in the Dec. 2 online Science Express.

It is well established that all known life requires phosphorus, usually in the form of inorganic phosphate. In recent years, however, astrobiologists, including Arizona State University professors Ariel Anbar and Paul Davies, have stepped up conversations about alternative forms of life. Anbar and Davies are coauthors of the new paper, along with ASU associate research scientist Gwyneth Gordon. The lead author is Felisa Wolfe-Simon, a former postdoctoral scientist in Anbar’s research group at ASU’s School of Earth and Space Exploration and Department of Chemistry and Biochemistry in the College of Liberal Arts and Sciences.

“Life as we know it requires particular chemical elements and excludes others,” says Anbar, a biogeochemist and astrobiologist who directs the astrobiology program at ASU. “But are those the only options? How different could life be?” Anbar and Wolfe-Simon are among a group of researchers who are testing the limits of life’s chemical requirements.

“One of the guiding principles in the search for life on other planets, and of our astrobiology program, is that we should ‘follow the elements,’” says Anbar. “Felisa’s study teaches us that we ought to think harder about which elements to follow.”

Wolfe-Simon adds: “We took what we do know about the ‘constants’ in biology, specifically that life requires the six elements CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur) in three components, namely DNA, proteins and fats, and used that as a basis to ask experimentally testable hypotheses even here on Earth.”

From this viewpoint, rather than highlighting the conventional view of the “diversity” of life, all life on Earth is essentially identical, she says. However, the microbe the researchers have discovered can act differently.

Davies has previously speculated that forms of life different from our own, dubbed “weird life,” might even exist side-by-side with known life on Earth, in a sort of “shadow biosphere.” The particular idea that arsenic, which lies directly below phosphorous on the periodic table, might substitute for phosphorus in life on Earth, was proposed by Wolfe-Simon and developed into a collaboration with Davies and Anbar. Their hypothesis was published in January 2009, in a paper titled “Did nature also choose arsenic?” in the International Journal of Astrobiology.

“We not only hypothesized that biochemical systems analogous to those known today could utilize arsenate in the equivalent biological role as phosphate,” notes Wolfe-Simon “but also that such organisms could have evolved on the ancient Earth and might persist in unusual environments today.”

Wolfe-Simon, now a NASA astrobiology research fellow in residence at the U.S. Geological Survey, was one of the participants, along with Anbar, at a workshop titled “Tree or Forest? Searching for Alternative Forms of Life on Earth,” that was organized in December 2006 by the BEYOND Center for Fundamental Concepts in Science, a “cosmic think tank” at ASU. She is currently an adjunct faculty member at the BEYOND Center.

“That’s where it all began,” says Davies, a cosmologist, astrobiologist, theoretical physicist and director of the BEYOND Center.

“Felisa’s talk was memorable for being a concrete proposal,” Davies says. “Many of the talks at the workshop discussed searching for radically alternative forms of life with suggestions of the form ‘maybe something roughly like this,’ or ‘maybe a bit like that.’ But Felisa said, quite explicitly, ‘this is what we go look for.’ And, she did.”

“The idea was provocative, but it made good sense,” notes Anbar. “Arsenic is toxic mainly because its chemical behavior is so similar to that of phosphorus. As a result, organisms have a hard time telling these elements apart. But arsenic is different enough that it doesn’t work as well as phosphorus, so it gets in there and sort of gums up the works of our biochemical machinery.”

After leaving ASU, Wolfe-Simon began a collaboration with Ronald Oremland of the U.S. Geological Survey to chase down the hypothesis. Oremland was a natural choice to bring into the project because he is a world expert in arsenic microbiology. What Wolfe-Simon discovered is presented in the Science Express paper titled “A bacterium that can grow by using arsenic instead of phosphorus.”

The latest discovery is all about a bacterium – strain GFAJ-1 of the Halomonadaceae family of Gammaproteobacteria – scooped from sediments of eastern California’s Mono Lake, which is extremely salty with naturally high levels of arsenic.

In the laboratory, the researchers successfully grew microbes from the lake on a diet that was very lean on phosphorus, but included generous helpings of arsenic.

Key issues that the researchers needed to address were the levels of arsenic and phosphorus in the experiments and whether arsenic actually became incorporated into the organisms’ vital biochemical machinery, such as DNA, proteins and the cell membranes. A variety of sophisticated laboratory techniques was used to nail down where the arsenic went, including mass spectrometry measurements by Gordon at the W.M. Keck Foundation Laboratory for Environmental Biogeochemistry at ASU.

Commenting on the significance of the discovery, Davies says: “This organism has dual capability. It can grow with either phosphorous or arsenic. That makes it very peculiar, though it falls short of being some form of truly ‘alien’ life belonging to a different tree of life with a separate origin. However, GFAJ-1 may be a pointer to even weirder organisms. The holy grail would be a microbe that contained no phosphorus at all.”

Davies predicts that the new organism “is surely the tip of a big iceberg, and so has the potential to open up a whole new domain of microbiology.”

It is not only scientists, however, who will be interested in this discovery. “Our findings are a reminder that life-as-we-know-it could be much more flexible than we generally assume or can imagine,” says Wolfe-Simon, noting that because microbes are major drivers of biogeochemical cycles and disease this study may open up a whole new chapter in biology textbooks.

“Yet, this story isn’t about arsenic or Mono Lake,” Wolfe-Simon says. “If something here on Earth can do something so unexpected, what else can life do that we haven’t seen yet? Now is the time to find out.”

Other authors of the new study published in Science Express include Jodi Switzer Blum, Thomas Kulp and Shelly Hoeft, USGS; Jennifer Pett-Ridge and Peter Weber, Lawrence Livermore National Laboratory; John Stolz, Duquesne University; and Samuel Webb, Stanford Synchrotron Radiation Lightsource.

This study was funded in part by NASA’s Astrobiology Program. Wolfe-Simon, Anbar, Davies and Oremland are members of the NASA Astrobiology Institute “Follow the Elements” team at Arizona State University.

ARIZONA STATE UNIVERSITY (www.asu.edu)
College of Liberal Arts and Sciences (http://clas.asu.edu)
Astrobiology Program at ASU (http://astrobiology.asu.edu)
BEYOND: Center for Fundamental Concepts in Science (http://beyond.asu.edu)
School of Earth and Space Exploration (http://sese.asu.edu)
Department of Chemistry and Biochemistry (http://chemistry.asu.edu)
Department of Physics (http://physics.asu.edu)
Tempe, Arizona USA
ASU SOURCES:
Felisa Wolfe-Simon, felisawolfesimon@gmail.com
Ariel Anbar, anbar@asu.edu
Paul Davies, paul.davies@asu.edu
ASU MEDIA CONTACT:
Carol Hughes, carol.hughes@asu.edu
480-965-6375 | 480-254-3753 cell

Carol Hughes | Newswise Science News
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>