Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid Research Benefits From Gaia Satellite Mission

20.05.2015

Scientists discover dozens of small celestial bodies every night

Astronomical research on asteroids, i.e. minor planets, is also benefiting from the large-scale Gaia mission of the European Space Agency (ESA). Even though the astrometry satellite’s main purpose is to precisely measure nearly one billion stars in the Milky Way, it has tracked down a multitude of minor planets in our solar system. To determine its current position in space and thus ensure Gaia’s extremely high measurement accuracy, images are taken every day of the regions of the sky where the very faint satellite is located.


Quelle: http://www.zah.uni-heidelberg.de/de/gaia2/was-ist-gaia/

“Each night the images reveal several dozen minor planets. The data are quite valuable for our understanding of the origin of our solar system,” says Dr. Martin Altmann of the Institute for Astronomical Computing (ARI), which is part of the Centre for Astronomy of Heidelberg University.

Dr. Altmann heads the observation programme to determine the position of the Gaia satellite for the Data Processing and Analysis Consortium (DPAC), which is responsible for evaluating the data from Gaia.

The Gaia astrometry satellite, which has been fully operational since August 2014, measures with pinpoint accuracy the positions, movements and distances of stars in the Milky Way, thereby furnishing the basis for a three-dimensional map of our home galaxy. According to Dr. Altmann, it became clear during preparation for the Gaia mission that the ambitious accuracy goals required novel methods to determine the position and velocity of the satellite itself.

For this purpose an observation campaign was launched to determine Gaia’s position and velocity from Earth. As early as 2009, Dr. Altmann of the ARI and his colleague Dr. Sebastien Bouquillon of the Observatoire de Paris (France) began planning the programme together with an international team.

Among the partners for the implementation, they attracted observatories in Chile and Spain. The Institute for Astronomical Computing is responsible for coordinating the daily observations. Since the launch of Gaia in December 2013, Gaia’s ground-based position measurements are transmitted regularly to mission control, the European Space Operations Centre in Darmstadt.

Dr. Altmann explains that the astrometry satellite is at a distance of approximately 1.5 million kilometres and is always located in the region of space away from the Sun as viewed from the Earth. “For this reason Gaia’s positioning images are also perfect for observing minor planets. This so-called oppositional position brings these celestial bodies closer to Earth, making them appear brighter than at other times,” continues the Heidelberg researcher.

More than 2,000 small planets have been found this way since the beginning of this year, mainly on images from the VST telescope of the European Southern Observatory (ESO) in Chile. Dr. Altmann indicates that nearly 40 per cent of them are new discoveries. Moreover, these current measurements are especially interesting for already known minor planets as well, precisely because Gaia and the minor planets located in the same part of space are always opposite the sun at the time of observation.

Just like with the full moon, the planets’ entire earthward side is completely illuminated only at that location. This allows the researchers to measure the asteroid’s reflectivity very accurately and draw conclusions as to their chemical composition. Up to now only approximately 30 asteroids have their reflectivity sufficiently well-determined, according to Dr. Altmann.

The Gaia astrometry satellite itself will also discover and accurately measure many asteroids in its survey of the sky, but in totally different regions. “In this respect, the observations from the Gaia mission and the ground-based measurements complement each other extremely well,” says Dr. Altmann. “We hope not only to acquire new insight into the origins of our home galaxy through the Gaia satellite mission. We will certainly learn more about the origins of our solar system,” stresses Prof. Dr. Stefan Jordan of the Institute for Astronomical Computing, whose responsibilities also include public relations for the DPAC Consortium.

Contact:
Dr. Guido Thimm
Centre for Astronomy of Heidelberg University
Phone: +49 6221 54-1805
thimm@ari.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.zah.uni-heidelberg.de/gaia
http://www.cosmos.esa.int/web/gaia
http://gbot.obspm.fr/pub/ast

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Asteroid Astronomy Computing Earth Gaia Milky Way Space observations satellite solar system

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>