Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid Diversity Points to a "Snow Globe" Solar System

30.01.2014
Our solar system seems like a neat and orderly place, with small, rocky worlds near the Sun and big, gaseous worlds farther out, all eight planets following orbital paths unchanged since they formed.

However, the true history of the solar system is more riotous. Giant planets migrated in and out, tossing interplanetary flotsam and jetsam far and wide. New clues to this tumultuous past come from the asteroid belt.


In this artist's conception, Jupiter's migration through the solar system has swept asteroids out of stable orbits, sending them careening into one another. As the gas giant planets migrated, they stirred the contents of the solar system. Objects from as close to the Sun as Mercury, and as far out as Neptune, all collected in the main asteroid belt, leading to the diverse composition we see today.
David A. Aguilar (CfA)


Astronomers have theorized that long-ago asteroid impacts delivered much of the water now filling Earth's oceans, as shown in this artist's conception. If true, the stirring provided by migrating planets may have been essential to bringing those asteroids.

"We found that the giant planets shook up the asteroids like flakes in a snow globe," says lead author Francesca DeMeo, a Hubble postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics.

Millions of asteroids circle the Sun between the orbits of Mars and Jupiter, in a region known as the main asteroid belt. Traditionally, they were viewed as the pieces of a failed planet that was prevented from forming by the influence of Jupiter's powerful gravity. Their compositions seemed to vary methodically from drier to wetter, due to the drop in temperature as you move away from the Sun.

That traditional view changed as astronomers recognized that the current residents of the main asteroid belt weren't all there from the start. In the early history of our solar system the giant planets ran amok, migrating inward and outward substantially. Jupiter may have moved as close to the Sun as Mars is now. In the process, it swept the asteroid belt nearly clean, leaving only a tenth of one percent of its original population.

As the planets migrated, they stirred the contents of the solar system. Objects from as close to the Sun as Mercury, and as far out as Neptune, all collected in the main asteroid belt.

"The asteroid belt is a melting pot of objects arriving from diverse locations and backgrounds," explains DeMeo.

Using data from the Sloan Digital Sky Survey, DeMeo and co-author Benoit Carry (Paris Observatory) examined the compositions of thousands of asteroids within the main belt. They found that the asteroid belt is more diverse than previously realized, especially when you look at the smaller asteroids.

This finding has interesting implications for the history of Earth. Astronomers have theorized that long-ago asteroid impacts delivered much of the water now filling Earth's oceans. If true, the stirring provided by migrating planets may have been essential to bringing those asteroids.

This raises the question of whether an Earth-like exoplanet would also require a rain of asteroids to bring water and make it habitable. If so, then Earth-like worlds might be rarer than we thought.

The paper describing these findings appears in the January 30, 2014 issue of Nature.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'
26.07.2016 | NASA/Goddard Space Flight Center

nachricht Lonely Atoms, Happily Reunited
26.07.2016 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>