Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assembly stand completed for NASA's Webb Telescope flight optics

18.11.2011
The cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. has received a giant structural steel frame that will be used to assemble the mirrors and instruments of the James Webb Space Telescope.

"This milestone is important as it marks the transition to the integration and testing phase for the Webb telescope's optical telescope element," said Lee Feinberg, Optical Telescope Element Manager for the Webb telescope at Goddard.


This is the Webb Telescope Ambient Optical Assembly Stand. Credit: NASA/Maggie Masetti

The Webb telescope is the world's next-generation space observatory and scientific successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will observe the most distant objects in the universe, provide images of the very first galaxies ever formed and study planets around distant stars.

The installation of the giant structural steel optical assembly stand was recently completed at Goddard by Northrop Grumman in Redondo Beach, Calif. and its teammate ITT Exelis, McLean, Va. Northrop Grumman is leading the design and development effort for the telescope under contract to Goddard.

"Due to the excellent efforts of our teammate ITT Exelis, we have completed each of the major elements of equipment required to complete the assembly of the optical flight telescope," said Scott Willoughby, Webb telescope vice president and program manager at Northrop Grumman Aerospace Systems. "With the near completion of the final cryotest for the last six flight mirror segments, we are making great progress on the program."

The U-shaped optical assembly stand is is 24 feet high, 52 feet wide and 41 feet long and weighs 139,000 pounds. Its purpose is to cradle the entire 3.7 metric ton optical telescope and install 18 individual 90 pound mirror segments and other components onto the telescope structure with better than one one-thousandth of an inch precision. The platform has been installed in Goddard's largest clean room where Northrop Grumman and ITT will assemble the telescope in late 2014.

ITT Exelis teammate JPW Companies in Syracuse, N.Y. built the massive structure. Two other ITT teammates supplied other elements of the assembly stand: Cranetech, Inc. designed and built the track system suspended above the stand and Progressive Machine and Design made the robotic arms attached to the track that install the mirror segments. The ITT Exelis team spent a year incrementally building and demonstrating the mirror installation equipment.

"The integration equipment is a critical piece of the Webb telescope program. Over the past three years, ITT Exelis has developed a risk reduction program to demonstrate the key elements of this equipment," said Rob Mitrevski, vice president and general manager, Intelligence, Surveillance and Reconnaissance Systems at ITT Exelis Geospatial Systems. "With the delivery of the assembly stand, all of the equipment is coming together in preparation for the telescope assembly effort."

The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information about the James Webb Space Telescope, visit:
http://jwst.nasa.gov
To see the assembly stand and other Webb telescope components in Goddard's cleanroom, visit:

http://www.jwst.nasa.gov/webcam.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: ITT Space Space Telescope Telescope Webb telescope optical telescope

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>