Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Assembly stand completed for NASA's Webb Telescope flight optics

The cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. has received a giant structural steel frame that will be used to assemble the mirrors and instruments of the James Webb Space Telescope.

"This milestone is important as it marks the transition to the integration and testing phase for the Webb telescope's optical telescope element," said Lee Feinberg, Optical Telescope Element Manager for the Webb telescope at Goddard.

This is the Webb Telescope Ambient Optical Assembly Stand. Credit: NASA/Maggie Masetti

The Webb telescope is the world's next-generation space observatory and scientific successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will observe the most distant objects in the universe, provide images of the very first galaxies ever formed and study planets around distant stars.

The installation of the giant structural steel optical assembly stand was recently completed at Goddard by Northrop Grumman in Redondo Beach, Calif. and its teammate ITT Exelis, McLean, Va. Northrop Grumman is leading the design and development effort for the telescope under contract to Goddard.

"Due to the excellent efforts of our teammate ITT Exelis, we have completed each of the major elements of equipment required to complete the assembly of the optical flight telescope," said Scott Willoughby, Webb telescope vice president and program manager at Northrop Grumman Aerospace Systems. "With the near completion of the final cryotest for the last six flight mirror segments, we are making great progress on the program."

The U-shaped optical assembly stand is is 24 feet high, 52 feet wide and 41 feet long and weighs 139,000 pounds. Its purpose is to cradle the entire 3.7 metric ton optical telescope and install 18 individual 90 pound mirror segments and other components onto the telescope structure with better than one one-thousandth of an inch precision. The platform has been installed in Goddard's largest clean room where Northrop Grumman and ITT will assemble the telescope in late 2014.

ITT Exelis teammate JPW Companies in Syracuse, N.Y. built the massive structure. Two other ITT teammates supplied other elements of the assembly stand: Cranetech, Inc. designed and built the track system suspended above the stand and Progressive Machine and Design made the robotic arms attached to the track that install the mirror segments. The ITT Exelis team spent a year incrementally building and demonstrating the mirror installation equipment.

"The integration equipment is a critical piece of the Webb telescope program. Over the past three years, ITT Exelis has developed a risk reduction program to demonstrate the key elements of this equipment," said Rob Mitrevski, vice president and general manager, Intelligence, Surveillance and Reconnaissance Systems at ITT Exelis Geospatial Systems. "With the delivery of the assembly stand, all of the equipment is coming together in preparation for the telescope assembly effort."

The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information about the James Webb Space Telescope, visit:
To see the assembly stand and other Webb telescope components in Goddard's cleanroom, visit:

Rob Gutro | EurekAlert!
Further information:

Further reports about: ITT Space Space Telescope Telescope Webb telescope optical telescope

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>