Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assembly stand completed for NASA's Webb Telescope flight optics

18.11.2011
The cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md. has received a giant structural steel frame that will be used to assemble the mirrors and instruments of the James Webb Space Telescope.

"This milestone is important as it marks the transition to the integration and testing phase for the Webb telescope's optical telescope element," said Lee Feinberg, Optical Telescope Element Manager for the Webb telescope at Goddard.


This is the Webb Telescope Ambient Optical Assembly Stand. Credit: NASA/Maggie Masetti

The Webb telescope is the world's next-generation space observatory and scientific successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will observe the most distant objects in the universe, provide images of the very first galaxies ever formed and study planets around distant stars.

The installation of the giant structural steel optical assembly stand was recently completed at Goddard by Northrop Grumman in Redondo Beach, Calif. and its teammate ITT Exelis, McLean, Va. Northrop Grumman is leading the design and development effort for the telescope under contract to Goddard.

"Due to the excellent efforts of our teammate ITT Exelis, we have completed each of the major elements of equipment required to complete the assembly of the optical flight telescope," said Scott Willoughby, Webb telescope vice president and program manager at Northrop Grumman Aerospace Systems. "With the near completion of the final cryotest for the last six flight mirror segments, we are making great progress on the program."

The U-shaped optical assembly stand is is 24 feet high, 52 feet wide and 41 feet long and weighs 139,000 pounds. Its purpose is to cradle the entire 3.7 metric ton optical telescope and install 18 individual 90 pound mirror segments and other components onto the telescope structure with better than one one-thousandth of an inch precision. The platform has been installed in Goddard's largest clean room where Northrop Grumman and ITT will assemble the telescope in late 2014.

ITT Exelis teammate JPW Companies in Syracuse, N.Y. built the massive structure. Two other ITT teammates supplied other elements of the assembly stand: Cranetech, Inc. designed and built the track system suspended above the stand and Progressive Machine and Design made the robotic arms attached to the track that install the mirror segments. The ITT Exelis team spent a year incrementally building and demonstrating the mirror installation equipment.

"The integration equipment is a critical piece of the Webb telescope program. Over the past three years, ITT Exelis has developed a risk reduction program to demonstrate the key elements of this equipment," said Rob Mitrevski, vice president and general manager, Intelligence, Surveillance and Reconnaissance Systems at ITT Exelis Geospatial Systems. "With the delivery of the assembly stand, all of the equipment is coming together in preparation for the telescope assembly effort."

The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information about the James Webb Space Telescope, visit:
http://jwst.nasa.gov
To see the assembly stand and other Webb telescope components in Goddard's cleanroom, visit:

http://www.jwst.nasa.gov/webcam.html

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: ITT Space Space Telescope Telescope Webb telescope optical telescope

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>