Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Assassin' targets supernovae in our neighborhood of the universe

08.01.2015

Project's success spawns a new effort to study other local sky events

While many astronomical collaborations use powerful telescopes to target individual objects in the distant universe, a new project at The Ohio State University is doing something radically different: using small telescopes to study a growing portion of the nearby universe all at once.


On the left is a Sloan Digital Sky Survey archival image of a galaxy some 400 million light years away in which the All-Sky Automated Survey for Supernovae (ASAS-SN, pronounced 'assassin') detected a bright supernova on Jan. 3, 2015. On the right is an image submitted by ASAS-SN amateur contributor Seiichiro Kiyota of the Variable Star Observers League in Japan, which confirmed the existence of the supernova.

Credit: ASAS-SN image courtesy of The Ohio State University

The strategy is paying off. At the American Astronomical Society (AAS) meeting in Seattle this week, researchers reported early successes from the All-Sky Automated Survey for Supernovae (ASAS-SN, pronounced "assassin").

Since it officially launched in May 2014, ASAS-SN has detected 89 bright supernovae and counting--more than all other professional astronomical surveys combined.

Right now, the survey consists of six 6-inch telescopes--four in Hawaii and two in Chile--and a cadre of telescopes volunteered by amateurs around the world. Two additional telescopes are set to go online early in 2015. And because the survey is capturing hundreds of other bright, local objects in addition to supernovae, Ohio State researchers are about to launch a series of spin-off projects, each geared to serve the growing interests of amateurs and professional astronomers alike.

ASAS-SN covers the nearest 500 million light years around the Milky Way Galaxy--about 1 percent of the observable universe, the edge of which is more than 46 billion light years away.

"It's natural to be interested in our local neighborhood. This is where we live, this is where the action is," said Krzysztof Stanek, professor of astronomy at Ohio State.

"ASAS-SN is the only survey to study the local universe. Our early success proves that small telescopes can do big things, and the interest we've received from the astronomical community has quickly grown to the point that we need additional projects to cover other types of detection events besides supernovae."

In particular, ASAS-SN has spotted more than 250 cataclysmic variables--stars that vary dramatically in brightness. At AAS, Ohio State doctoral student A. Bianca Danilet announced the launch of an ASAS-SN offshoot called the CV Patrol, which will track cataclysmic variable data from small telescopes online and in real time.

"This approach to looking at the nearby universe is proving successful in part because it's affordable, utilizes the efforts of highly motivated citizen scientists, and has the global reach necessary to spot these events and track them. It also just may provide information about the physics of these bright and transient phenomena that far-seeing telescopes cannot," Danilet said.

Doctoral student Thomas Holoien agreed, adding that big telescopes are too sensitive to capture details of bright, nearby events. In that way, ASAS-SN complements the efforts of the big surveys. "We pick up where they leave off," he said.

Aside from cataclysmic variables, ASAS-SN has picked up two nearby tidal disruption events--extremely rare sightings of what happens when a black hole captures a portion of a nearby star--and many M dwarf flares, which are believed to emanate from stars with extremely strong magnetic fields.

Even though all these bright events happen in our local neighborhood, nobody is sure exactly how often they occur, said Christopher Kochanek, professor of astronomy at Ohio State and the Ohio Eminent Scholar in Observational Cosmology. ASAS-SN gives astronomers a chance to learn more about these events by seeing them up close.

Because ASAS-SN discoveries are made public online (at http://www.astronomy.ohio-state.edu/~assassin/), amateur astronomers can follow along and contribute. Stanek said that the volunteers have already formed a growing and active community, in part because amateurs who are able to submit an image confirming an ASAS-SN supernova are awarded co-authorship on any journal papers that result.

This work is primarily funded by the National Science Foundation and Center for Cosmology and Astro Particle Physics at Ohio State. Holoien is funded by the Department of Energy Computational Science Graduate Fellowship. Additional support came from the Mt. Cuba Astronomical Foundation and a private donation from retired Homewood Corp. CEO George Skestos. ASAS-SN telescopes are hosted by the Las Cumbres Observatory Global Telescope Network.

Contacts: Krzysztof Stanek, (614) 292-3433; Stanek.32@osu.edu

Christopher Kochanek, (614) 292-5954; Kochanek.1@osu.edu

[Stanek and Kochanek are not attending the AAS meeting. Email Danilet (Davis.4811@osu.edu) and Holoien (Holoien.1@osu.edu), or reach them through Pam Frost Gorder.]

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu.

Pam Frost Gorder | EurekAlert!
Further information:
http://researchnews.osu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>