Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Assassin' targets supernovae in our neighborhood of the universe

08.01.2015

Project's success spawns a new effort to study other local sky events

While many astronomical collaborations use powerful telescopes to target individual objects in the distant universe, a new project at The Ohio State University is doing something radically different: using small telescopes to study a growing portion of the nearby universe all at once.


On the left is a Sloan Digital Sky Survey archival image of a galaxy some 400 million light years away in which the All-Sky Automated Survey for Supernovae (ASAS-SN, pronounced 'assassin') detected a bright supernova on Jan. 3, 2015. On the right is an image submitted by ASAS-SN amateur contributor Seiichiro Kiyota of the Variable Star Observers League in Japan, which confirmed the existence of the supernova.

Credit: ASAS-SN image courtesy of The Ohio State University

The strategy is paying off. At the American Astronomical Society (AAS) meeting in Seattle this week, researchers reported early successes from the All-Sky Automated Survey for Supernovae (ASAS-SN, pronounced "assassin").

Since it officially launched in May 2014, ASAS-SN has detected 89 bright supernovae and counting--more than all other professional astronomical surveys combined.

Right now, the survey consists of six 6-inch telescopes--four in Hawaii and two in Chile--and a cadre of telescopes volunteered by amateurs around the world. Two additional telescopes are set to go online early in 2015. And because the survey is capturing hundreds of other bright, local objects in addition to supernovae, Ohio State researchers are about to launch a series of spin-off projects, each geared to serve the growing interests of amateurs and professional astronomers alike.

ASAS-SN covers the nearest 500 million light years around the Milky Way Galaxy--about 1 percent of the observable universe, the edge of which is more than 46 billion light years away.

"It's natural to be interested in our local neighborhood. This is where we live, this is where the action is," said Krzysztof Stanek, professor of astronomy at Ohio State.

"ASAS-SN is the only survey to study the local universe. Our early success proves that small telescopes can do big things, and the interest we've received from the astronomical community has quickly grown to the point that we need additional projects to cover other types of detection events besides supernovae."

In particular, ASAS-SN has spotted more than 250 cataclysmic variables--stars that vary dramatically in brightness. At AAS, Ohio State doctoral student A. Bianca Danilet announced the launch of an ASAS-SN offshoot called the CV Patrol, which will track cataclysmic variable data from small telescopes online and in real time.

"This approach to looking at the nearby universe is proving successful in part because it's affordable, utilizes the efforts of highly motivated citizen scientists, and has the global reach necessary to spot these events and track them. It also just may provide information about the physics of these bright and transient phenomena that far-seeing telescopes cannot," Danilet said.

Doctoral student Thomas Holoien agreed, adding that big telescopes are too sensitive to capture details of bright, nearby events. In that way, ASAS-SN complements the efforts of the big surveys. "We pick up where they leave off," he said.

Aside from cataclysmic variables, ASAS-SN has picked up two nearby tidal disruption events--extremely rare sightings of what happens when a black hole captures a portion of a nearby star--and many M dwarf flares, which are believed to emanate from stars with extremely strong magnetic fields.

Even though all these bright events happen in our local neighborhood, nobody is sure exactly how often they occur, said Christopher Kochanek, professor of astronomy at Ohio State and the Ohio Eminent Scholar in Observational Cosmology. ASAS-SN gives astronomers a chance to learn more about these events by seeing them up close.

Because ASAS-SN discoveries are made public online (at http://www.astronomy.ohio-state.edu/~assassin/), amateur astronomers can follow along and contribute. Stanek said that the volunteers have already formed a growing and active community, in part because amateurs who are able to submit an image confirming an ASAS-SN supernova are awarded co-authorship on any journal papers that result.

This work is primarily funded by the National Science Foundation and Center for Cosmology and Astro Particle Physics at Ohio State. Holoien is funded by the Department of Energy Computational Science Graduate Fellowship. Additional support came from the Mt. Cuba Astronomical Foundation and a private donation from retired Homewood Corp. CEO George Skestos. ASAS-SN telescopes are hosted by the Las Cumbres Observatory Global Telescope Network.

Contacts: Krzysztof Stanek, (614) 292-3433; Stanek.32@osu.edu

Christopher Kochanek, (614) 292-5954; Kochanek.1@osu.edu

[Stanek and Kochanek are not attending the AAS meeting. Email Danilet (Davis.4811@osu.edu) and Holoien (Holoien.1@osu.edu), or reach them through Pam Frost Gorder.]

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu.

Pam Frost Gorder | EurekAlert!
Further information:
http://researchnews.osu.edu

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>