Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificially controlling water condensation leads to 'room-temperature ice'

28.07.2010
Earth's climate is strongly influenced by the presence of particles of different shapes and origins -- in the form of dust, ice and pollutants -- that find their way into the lowest portion of the atmosphere, the troposphere. There, water adsorbed on the surface of these particles can freeze at higher temperatures than pure water droplets, triggering rain and snow.

Researchers at Spain's Centre d'Investigació en Nanociència i Nanotecnologia (CIN2) have studied the underlying mechanisms of water condensation in the troposphere and found a way to make artificial materials to control water condensation and trigger ice formation at room temperature.

Described in the Journal of Chemical Physics, which is published by the American Institute of Physics, their work may lead to new additives for snowmaking, improved freezer systems, or new coatings that help grow ice for skating rinks.

"Several decades ago, scientists predicted that materials with crystal faces exhibiting a structure similar to that of hexagonal ice, the form of all natural snow and ice on Earth, would be an ideal agent to induce freezing and trigger rain," explains Dr. Albert Verdaguer. "This explanation has since proven to be insufficient."

The research team chose to study barium fluoride (BaF2), a naturally occurring mineral, also known as "Frankdicksonite," as an option. They examined water adsorption on BaF2 (111) surfaces under ambient conditions using different scanning force microscopy modes and optical microscopy to zoom in on the role atomic steps play in the structure of water films, which can affect the stabilization of water bilayers and, ultimately, condensation.

Despite having the desired hexagonal structure, BaF2 turned out to be a poor ice-nucleating material. But oddly enough, other researchers had discovered that when the mineral's surface has defects, its condensation efficiency is enhanced.

Verdaguer and his colleagues figured out why this occurs. "Under ambient conditions -- room temperature and different humidities -- we observed that water condensation is mainly induced by the formation of two-dimensional ice-like patches at surface defects," Verdaguer says. "Based on our results and previous research, we're preparing artificial materials to improve water condensation in a controllable way."

The next step? The researchers' goal now is to produce environmentally-friendly synthetic materials for efficiently inducing snow. "If water condenses in an ordered way, such as a hexagonal structure, on such surfaces at ambient conditions, the term 'room temperature ice' would be fully justified," adds Verdaguer. "The solid phase, ice, would be produced by a surface effect rather than as a consequence of temperature. In the long term, we intend to prepare smart materials, 'intelligent surfaces,' that will react to water in a predefined way."

The article, "Two-dimensional wetting: The role of atomic steps on the nucleation of thin water films on BaF2(111) at ambient conditions" by M. Cardellach, A. Verdaguer, J. Santiso, and J. Fraxedas was published online in the Journal of Chemical Physics on June 21, 2010. See: http://link.aip.org/link/JCPSA6/v132/i23/p234708/s1

ABOUT THE JOURNAL OF CHEMICAL PHYSICS

The Journal of Chemical Physics publishes concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. Routine applications of chemical physics techniques may not be appropriate for JCP. Content is published online daily, collected into four monthly online and printed issues (48 issues per year); the journal is published by the American Institute of Physics. See: http://jcp.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>