Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using artificial intelligence to chart the Universe

24.09.2012
Astronomers in Germany have developed an artificial intelligence algorithm to help them chart and explain the structure and dynamics of the universe around us. The team, led by Francisco Kitaura of the Leibniz Institute for Astrophysics in Potsdam, report their results in the journal Monthly Notices of the Royal Astronomical Society.
Scientists routinely use large telescopes to scan the sky, mapping the coordinates and estimating the distances of hundreds of thousands of galaxies and so enabling scientists to map the large-scale structure of the Universe. But the distribution they see is intriguing and hard to explain, with galaxies forming a complex ‘cosmic web’ showing clusters, filaments connecting them, and large empty regions in between.

The driving force for such a rich structure is gravitation. Around 5 percent of the cosmos appears to be made of ‘normal’ matter that makes up the stars, planets, dust and gas we can see and around 23 percent is made up of invisible ‘dark’ matter.
The largest component, some 72 percent of the cosmos, is made up of a mysterious ‘dark energy’ thought to be responsible for accelerating the expansion of the Universe. This Lambda Cold Dark Matter (LCDM) model for the universe was the starting point for the work of the Potsdam team.

Measurements of the residual heat from the Big Bang – the so-called Cosmic Microwave Background Radiation or CMBR – allow astronomers to determine the motion of the Local Group, the cluster of galaxies that includes the Milky Way, the galaxy we live in. Astronomers try to reconcile this motion with that predicted by the distribution of matter around us, but this is compromised by the difficulty of mapping the dark matter in the same region.

“Finding the dark matter distribution corresponding to a galaxy catalogue is like trying to make a geographical map of Europe from a satellite image during the night which only shows the light coming from dense populated areas”, says Dr Kitaura.

His new algorithm is based on artificial intelligence (AI). It starts with the fluctuations in the density of the universe seen in the CMBR, then models the way that matter collapses into today’s galaxies over the subsequent 13700 million years. The results of the AI algorithm are a close fit to the observed distribution and motion of galaxies.

Dr Kitaura comments, “Our precise calculations show that the direction of motion and 80 percent of the speed of the galaxies that make up the Local Group can be explained by the gravitational forces that arise from matter up to 370 million light years away. In comparison the Andromeda Galaxy, the largest member of the Local Group, is a mere 2.5 million light years distant so we are seeing how the distribution of matter at great distances affects galaxies much closer to home.

Our results are also in close agreement with the predictions of the LCDM model. To explain the rest of the 20 percent of the speed, we need to consider the influence of matter up to about 460 million light years away, but at the moment the data are less reliable at such a large distance.

Despite this caveat, our model is a big step forward. With the help of AI, we can now model the universe around us with unprecedented accuracy and study how the largest structures in the cosmos came into being.”

Since 2011 Francisco Kitaura has been working at the AIP. His publication is available online on http://arxiv.org/abs/1205.5560 and will soon be published in Monthly Notices of the Royal Astronomical Society (MNRAS).

Science contact:
Dr. Francisco-Shu Kitaura, +49 331-7499 447, fkitaura@aip.de
Research, Images, Movies: http://www.aip.de/Members/fkitaura
Press contact:
Kerstin Mork, +49 331-7499 469, presse@aip.de

Leibniz Institute for Astrophysics:
The key areas of research at the Leibniz Institute for Astrophysics (Astrophysics Institute Potsdam – AIP) are cosmic magnetic fields and extragalactic astrophysics. A considerable part of the Institute's efforts aim at the development of research technology in the fields of spectroscopy, robotic telescopes, and e-science. The AIP is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory of Potsdam founded in 1874. The latter was the world's first observatory to emphasize explicitly the research area of astrophysics. The AIP has been a member of the Leibniz Association since 1992.

Kerstin Mork | idw
Further information:
http://www.aip.de/Members/fkitaura
http://arxiv.org/abs/1205.5560

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>