Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Art of Recycling Pulsars

03.02.2012
Stellar Astrophysics helps to explain the behaviour of fast rotating neutron stars in binary systems

The formation of millisecond pulsars is the result of stellar cannibalism where matter flows from a donor star to an accreting pulsar in a binary system. During this process the pulsar emits X-rays while being spun up to amazingly high rotational speeds.Thomas Tauris (Bonn Univ. & MPIfR) can show that millisecond pulsars loose about half of their rotational energy during the final stages of the mass-transfer before the pulsar turns on its radio beam. This is in agreement with current observations and also explains why radio millisecond pulsars appear to be much older than their companion stars - and perhaps why no sub-millisecond radio pulsars exist at all.


An artist's impression of an accreting X-ray millisecond pulsar. The flowing material from the companion star forms a disk around the neutron star which is truncated at the edge of the pulsar magnetosphere. Credit: NASA / Goddard Space Flight Center / Dana Berry

Millisecond pulsars are strongly magnetized, old neutron stars in binary systems which have been spun up to high rotational frequencies by accumulation of mass and angular momentum from a companion star. Today we know of about 200 such pulsars with spin periods between 1.4-10 milliseconds. These are located in both the Galactic Disk and in Globular Clusters.

Since the first millisecond pulsar was detected in 1982 is has remained a challenge for theorists to explain their spin periods, magnetic fields and ages. As an example, there is the "turn-off" problem, i.e. what happens to the spin of the pulsar when the donor star terminates its mass-transfer process?

"We have now, for the first time, combined detailed numerical stellar evolution models with calculations of the braking torque acting on the spinning pulsar", says Thomas Tauris, the author of the present study. "The result is that the millisecond pulsars loose about half of their rotational energy in the so-called Roche-lobe decoupling phase." This phase is describing the termination of the mass transfer in the binary system. Hence, radio-emitting millisecond pulsars should spin slightly slower than their progenitors, X-ray emitting millisecond pulsars which are still accreting material from their donor star. This is exactly what the observational data seem to suggest. Furthermore, these new findings can help explain why some millisecond pulsars appear to have characteristic ages exceeding the age of the Universe and perhaps why no sub-millisecond radio pulsars exist.

The key feature of the new results is that it has now been demonstrated how the spinning pulsar is able to brake out of its so-called equilibrium spin. At this epoch the mass-transfer rate decreases which causes the magnetospheric radius of the pulsar to expand and thereby expelling the infalling matter like a propeller. This causes the pulsar to loose additional rotational energy and thus slow down its spin rate.

"Actually, without a solution to the "turn-off" problem we would expect the pulsars to even slow down to spin periods of 50-100 milliseconds during the Roche-lobe decoupling phase", concludes Thomas Tauris. "That would be in clear contradiction with observational evidence for the existence of millisecond pulsars."

This work has profited from a recent effort to bridge the Stellar Physics group at the Argelander-Institut für Astronomie at University of Bonn (led by Norbert Langer) with the Fundamental Physics in Radio Astronomy group at the Max-Planck-Institut für Radioastronomie (led by Michael Kramer). The stellar evolution models used for this work were made using a state-of-the-art code developed by Norbert Langer. A significant part of the observational data was supplied by the pulsar group. Michael Kramer and his colleagues are using the 100-m Effelsberg Radio Telescope to participate in several ongoing searches and discoveries of millisecond pulsars.

Thomas Tauris has been working at the Argelander-Institut für Astronomie and the Max-Planck-Institut für Radioastronomie as a visiting research professor since 2010. Some of his recent work on the recycling of millisecond pulsars has been published in the journal "Monthly Notices of the Royal Astronomical Society" in joint publications with Norbert Langer and Michael Kramer. On February 27 they host an international one-day workshop in Bonn on the "Formation and Evolution of Neutron stars".
Share

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de/public/pr/pr-pulsar-ttauris-feb2012-en.html

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>