Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne, UC scientists reach milestone in study of emergent magnetism

23.06.2009
Quantum criticality in chromium is a stand-in for more complex systems

Scientists at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago have reached a milestone in the study of emergent magnetism.

Studying simple metallic chromium, the joint UC-Argonne team has discovered a pressure-driven quantum critical regime and has achieved the first direct measurement of a "naked" quantum singularity in an elemental magnet. The team was led by University of Chicago scientist Rafael Jaramillo, working in the group of Thomas Rosenbaum, and Argonne scientist Yejun Feng of the Advanced Photon Source.

The sophisticated spin and charge order in chromium is often used as a stand-in for understanding similar phenomena in more complex materials, such as correlated oxides proximate to a quantum critical point.

"Chromium is a simple metallic crystal that exhibits a sophisticated form of antiferromagnetism," said Jaramillo. "The goal was to find a simple system."

Quantum criticality describes a continuous phase transition that is driven by quantum mechanical fluctuations, and is thought to underlie several enigmatic problems in condensed matter physics including high-temperature superconductivity. However, achieving a continuous quantum phase transition in a simple magnet has proved to be a challenging goal, as the critical behavior in all systems studied to date has been obscured by competing phenomena. The discovery of a "naked" transition in simple chromium metal therefore paves the way for a more detailed understanding of magnetic quantum criticality

Like many elements, chromium has been extensively studied for decades and a discovery of this magnitude in an element is particularly important.

"It's not often that you find out something new in an element," Feng said.

The pressure scale and experimental techniques required to measure quantum criticality in chromium necessitated extensive technical development at both Argonne and the University of Chicago. The resulting techniques for high precision measurement of condensed matter systems at high pressure, developed for use at Sector 4 of the Advanced Photon Source, now approach a level of precision and control comparable to more conventional techniques such as magnetic varying field and temperature.

This work is reported in the May 21 issue of the journal Nature.

Funding for this research was provided by the National Science Foundation Division of Materials Research and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>