Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne, UC scientists reach milestone in study of emergent magnetism

23.06.2009
Quantum criticality in chromium is a stand-in for more complex systems

Scientists at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago have reached a milestone in the study of emergent magnetism.

Studying simple metallic chromium, the joint UC-Argonne team has discovered a pressure-driven quantum critical regime and has achieved the first direct measurement of a "naked" quantum singularity in an elemental magnet. The team was led by University of Chicago scientist Rafael Jaramillo, working in the group of Thomas Rosenbaum, and Argonne scientist Yejun Feng of the Advanced Photon Source.

The sophisticated spin and charge order in chromium is often used as a stand-in for understanding similar phenomena in more complex materials, such as correlated oxides proximate to a quantum critical point.

"Chromium is a simple metallic crystal that exhibits a sophisticated form of antiferromagnetism," said Jaramillo. "The goal was to find a simple system."

Quantum criticality describes a continuous phase transition that is driven by quantum mechanical fluctuations, and is thought to underlie several enigmatic problems in condensed matter physics including high-temperature superconductivity. However, achieving a continuous quantum phase transition in a simple magnet has proved to be a challenging goal, as the critical behavior in all systems studied to date has been obscured by competing phenomena. The discovery of a "naked" transition in simple chromium metal therefore paves the way for a more detailed understanding of magnetic quantum criticality

Like many elements, chromium has been extensively studied for decades and a discovery of this magnitude in an element is particularly important.

"It's not often that you find out something new in an element," Feng said.

The pressure scale and experimental techniques required to measure quantum criticality in chromium necessitated extensive technical development at both Argonne and the University of Chicago. The resulting techniques for high precision measurement of condensed matter systems at high pressure, developed for use at Sector 4 of the Advanced Photon Source, now approach a level of precision and control comparable to more conventional techniques such as magnetic varying field and temperature.

This work is reported in the May 21 issue of the journal Nature.

Funding for this research was provided by the National Science Foundation Division of Materials Research and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>