Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne cloud computing helps scientists run high energy physics experiments

26.03.2009
A novel system is enabling high energy physicists at CERN in Switzerland, to make production runs that integrate their existing pool of distributed computers with dynamic resources in "science clouds." The work was presented at the 17th annual conference on Computing in High Energy and Nuclear Physics, held in Prague, Czech Republic, March 21-27.

The integration was achieved by leveraging two mechanisms: the Nimbus Context Broker, developed by computer scientists at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago, and a portable software environment developed at CERN.

Scientists working on A Large Ion Collider Experiment, also known as the ALICE collaboration, are conducting heavy ion simulations at CERN. They have been developing and debugging compute jobs on a collection of internationally distributed resources, managed by a scheduler called AliEn.

Since researchers can always use additional resources, the question arose, How can one integrate a cloud's dynamically provisioned resources into an existing infrastructure such as the ALICE pool of computers, and still ensure that the various AliEn services have the same deployment-specific information? Artem Harutyunyan, sponsored by the Google Summer of Code to work on the Nimbus project, made this question the focus of his investigation. The first challenge was to develop a virtual machine that would support ALICE production computations.

"Fortunately, the CernVM project had developed a way to provide virtual machines that can be used as a base supporting the production environment for all four experiments at the Large Hadron Collider at CERN – including ALICE," said Harutyunyan, a graduate student at State Engineering University of Armenia and member of Yerevan Physics Institute ALICE group. "Otherwise, developing an environment for production physics runs would be a complex and demanding task."

The CernVM technology was originally started with the intent of supplying portable development environments that scientists could run on their laptops and desktops. A variety of virtual image formats are now supported, including the Xen images used by the Amazon EC2 as well as Science Clouds. The challenge for Harutyunyan was to find a way to deploy these images so that they would dynamically and securely register with the AliEn scheduler and thus join the ALICE resource pool.

Here the Nimbus Context Broker came into play. The broker allows a user to securely provide context-specific information to a virtual machine deployed on remote resources. It places minimal compatibility requirements on the cloud provider and can orchestrate information exchange across many providers.

"Commercial cloud providers such as EC2 allow users to deploy groups of unconnected virtual machines, whereas scientists typically need a ready-to-use cluster whose nodes share a common configuration and security context. The Nimbus Context Broker bridges that gap," said Kate Keahey, a computer scientist at Argonne and head of the Nimbus project.

Integration of the Nimbus Context Broker with the CernVM technology has proved a success. The new system dynamically deploys a virtual machine on the Nimbus cloud at the University of Chicago, which then joins the ALICE computer pool so that jobs can be scheduled on it. Moreover, with the addition of a queue sensor that deploys and terminates virtual machines based on demand, the researchers can experiment with ways to balance the cost of the additional resources against the need for them as evidenced by jobs in a queue.

According to Keahey, one of the most exciting achievements of the project was the fact that the work was accomplished by integrating cloud computing into the existing mechanisms. "We didn't need to change the users' perception of the system," Keahey said.

For more information on the CERNVM, please visit: http://cernvm.cern.ch

For more information on the Nimbus, please visit: http://workspace.globus.org

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Eleanor Taylor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>