Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne cloud computing helps scientists run high energy physics experiments

26.03.2009
A novel system is enabling high energy physicists at CERN in Switzerland, to make production runs that integrate their existing pool of distributed computers with dynamic resources in "science clouds." The work was presented at the 17th annual conference on Computing in High Energy and Nuclear Physics, held in Prague, Czech Republic, March 21-27.

The integration was achieved by leveraging two mechanisms: the Nimbus Context Broker, developed by computer scientists at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago, and a portable software environment developed at CERN.

Scientists working on A Large Ion Collider Experiment, also known as the ALICE collaboration, are conducting heavy ion simulations at CERN. They have been developing and debugging compute jobs on a collection of internationally distributed resources, managed by a scheduler called AliEn.

Since researchers can always use additional resources, the question arose, How can one integrate a cloud's dynamically provisioned resources into an existing infrastructure such as the ALICE pool of computers, and still ensure that the various AliEn services have the same deployment-specific information? Artem Harutyunyan, sponsored by the Google Summer of Code to work on the Nimbus project, made this question the focus of his investigation. The first challenge was to develop a virtual machine that would support ALICE production computations.

"Fortunately, the CernVM project had developed a way to provide virtual machines that can be used as a base supporting the production environment for all four experiments at the Large Hadron Collider at CERN – including ALICE," said Harutyunyan, a graduate student at State Engineering University of Armenia and member of Yerevan Physics Institute ALICE group. "Otherwise, developing an environment for production physics runs would be a complex and demanding task."

The CernVM technology was originally started with the intent of supplying portable development environments that scientists could run on their laptops and desktops. A variety of virtual image formats are now supported, including the Xen images used by the Amazon EC2 as well as Science Clouds. The challenge for Harutyunyan was to find a way to deploy these images so that they would dynamically and securely register with the AliEn scheduler and thus join the ALICE resource pool.

Here the Nimbus Context Broker came into play. The broker allows a user to securely provide context-specific information to a virtual machine deployed on remote resources. It places minimal compatibility requirements on the cloud provider and can orchestrate information exchange across many providers.

"Commercial cloud providers such as EC2 allow users to deploy groups of unconnected virtual machines, whereas scientists typically need a ready-to-use cluster whose nodes share a common configuration and security context. The Nimbus Context Broker bridges that gap," said Kate Keahey, a computer scientist at Argonne and head of the Nimbus project.

Integration of the Nimbus Context Broker with the CernVM technology has proved a success. The new system dynamically deploys a virtual machine on the Nimbus cloud at the University of Chicago, which then joins the ALICE computer pool so that jobs can be scheduled on it. Moreover, with the addition of a queue sensor that deploys and terminates virtual machines based on demand, the researchers can experiment with ways to balance the cost of the additional resources against the need for them as evidenced by jobs in a queue.

According to Keahey, one of the most exciting achievements of the project was the fact that the work was accomplished by integrating cloud computing into the existing mechanisms. "We didn't need to change the users' perception of the system," Keahey said.

For more information on the CERNVM, please visit: http://cernvm.cern.ch

For more information on the Nimbus, please visit: http://workspace.globus.org

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Eleanor Taylor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>