Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne's CARIBU charge breeder breaks world record for efficiency

14.04.2010
Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have pushed the limits of charge breeding and broken a long-standing world record for ionization efficiency of solids.

Argonne's Californium Rare Isotope Breeder Upgrade (CARIBU) project has reached 11.9 percent efficiency with metallic particles of rubidium. The previous metal record was 6.5 percent, using potassium, achieved at Laboratory of Subatomic Physics and Cosmology (LPSC) in Grenoble.

“There have been several improvements made that increased efficiency little by little until we finally reached record numbers, and we foresee even higher efficiencies in the future,” said senior accelerator physicist Richard Pardo.

CARIBU is an Accelerator Improvement Project funded by the U.S. Department of Energy’s Office of Science. Beams of stable isotopes from elements across the entire periodic table have been used at the Argonne Tandem-Linac Accelerator System (ATLAS) for research in nuclear physics for many years.

But when additional protons or neutrons are added to originally stable isotopes, the nuclei eventually become 'particle unstable', emitting excess protons or neutrons. Neutrons, unlike protons and electrons, have no charge; therefore, many more can be added to a nucleus before it becomes unstable.

The CARIBU project will extend ATLAS's reach to include potentially hundreds of previously unstudied isotopes.

CARIBU will use californium-252 to create neutron-rich heavy fission fragments at a rate of more than one billion per second. These fragments are thermalized in helium gas and converted into a low-energy beam of singly charged ions.

The charge breeder, an electron cyclotron resonance (ECR) ion source, takes these beams, stops them in the plasma and strips them to higher-charged states for reacceleration in ATLAS.

Scientists used two radio frequencies (RF) to excite the plasma in the ECR source. This resulted in the creation of higher charge states and improved efficiency. They also injected the RF radially into the source using an open—versus a closed—hexapole structure. This allowed for higher magnetic confinement of the hot plasma, as well as more uniform field gradients.

“Fundamentally, there are limits to how high an efficiency you can get in a charge breeder, but we can expect a 20-30 percent improvement of current numbers,” said Argonne principal engineer Richard Vondrasek.

So far, CARIBU has only used stable metal ions for charge breeding, but testing has just begun using the radioactive isotopes from the californium source.

CARIBU is an Accelerator Improvement Project funded by the U.S. Department of Energy’s Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Brock Cooper (630/252-5565 or media@anl.gov) at Argonne.

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov
http://www.anl.gov/Media_Center/News/2010/news100412.html

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>