Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne's CARIBU charge breeder breaks world record for efficiency

14.04.2010
Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have pushed the limits of charge breeding and broken a long-standing world record for ionization efficiency of solids.

Argonne's Californium Rare Isotope Breeder Upgrade (CARIBU) project has reached 11.9 percent efficiency with metallic particles of rubidium. The previous metal record was 6.5 percent, using potassium, achieved at Laboratory of Subatomic Physics and Cosmology (LPSC) in Grenoble.

“There have been several improvements made that increased efficiency little by little until we finally reached record numbers, and we foresee even higher efficiencies in the future,” said senior accelerator physicist Richard Pardo.

CARIBU is an Accelerator Improvement Project funded by the U.S. Department of Energy’s Office of Science. Beams of stable isotopes from elements across the entire periodic table have been used at the Argonne Tandem-Linac Accelerator System (ATLAS) for research in nuclear physics for many years.

But when additional protons or neutrons are added to originally stable isotopes, the nuclei eventually become 'particle unstable', emitting excess protons or neutrons. Neutrons, unlike protons and electrons, have no charge; therefore, many more can be added to a nucleus before it becomes unstable.

The CARIBU project will extend ATLAS's reach to include potentially hundreds of previously unstudied isotopes.

CARIBU will use californium-252 to create neutron-rich heavy fission fragments at a rate of more than one billion per second. These fragments are thermalized in helium gas and converted into a low-energy beam of singly charged ions.

The charge breeder, an electron cyclotron resonance (ECR) ion source, takes these beams, stops them in the plasma and strips them to higher-charged states for reacceleration in ATLAS.

Scientists used two radio frequencies (RF) to excite the plasma in the ECR source. This resulted in the creation of higher charge states and improved efficiency. They also injected the RF radially into the source using an open—versus a closed—hexapole structure. This allowed for higher magnetic confinement of the hot plasma, as well as more uniform field gradients.

“Fundamentally, there are limits to how high an efficiency you can get in a charge breeder, but we can expect a 20-30 percent improvement of current numbers,” said Argonne principal engineer Richard Vondrasek.

So far, CARIBU has only used stable metal ions for charge breeding, but testing has just begun using the radioactive isotopes from the californium source.

CARIBU is an Accelerator Improvement Project funded by the U.S. Department of Energy’s Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Brock Cooper (630/252-5565 or media@anl.gov) at Argonne.

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov
http://www.anl.gov/Media_Center/News/2010/news100412.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Dune ecosystem modelling

26.06.2017 | Ecology, The Environment and Conservation

Insights into closed enzymes

26.06.2017 | Life Sciences

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>