Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne's CARIBU charge breeder breaks world record for efficiency

14.04.2010
Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have pushed the limits of charge breeding and broken a long-standing world record for ionization efficiency of solids.

Argonne's Californium Rare Isotope Breeder Upgrade (CARIBU) project has reached 11.9 percent efficiency with metallic particles of rubidium. The previous metal record was 6.5 percent, using potassium, achieved at Laboratory of Subatomic Physics and Cosmology (LPSC) in Grenoble.

“There have been several improvements made that increased efficiency little by little until we finally reached record numbers, and we foresee even higher efficiencies in the future,” said senior accelerator physicist Richard Pardo.

CARIBU is an Accelerator Improvement Project funded by the U.S. Department of Energy’s Office of Science. Beams of stable isotopes from elements across the entire periodic table have been used at the Argonne Tandem-Linac Accelerator System (ATLAS) for research in nuclear physics for many years.

But when additional protons or neutrons are added to originally stable isotopes, the nuclei eventually become 'particle unstable', emitting excess protons or neutrons. Neutrons, unlike protons and electrons, have no charge; therefore, many more can be added to a nucleus before it becomes unstable.

The CARIBU project will extend ATLAS's reach to include potentially hundreds of previously unstudied isotopes.

CARIBU will use californium-252 to create neutron-rich heavy fission fragments at a rate of more than one billion per second. These fragments are thermalized in helium gas and converted into a low-energy beam of singly charged ions.

The charge breeder, an electron cyclotron resonance (ECR) ion source, takes these beams, stops them in the plasma and strips them to higher-charged states for reacceleration in ATLAS.

Scientists used two radio frequencies (RF) to excite the plasma in the ECR source. This resulted in the creation of higher charge states and improved efficiency. They also injected the RF radially into the source using an open—versus a closed—hexapole structure. This allowed for higher magnetic confinement of the hot plasma, as well as more uniform field gradients.

“Fundamentally, there are limits to how high an efficiency you can get in a charge breeder, but we can expect a 20-30 percent improvement of current numbers,” said Argonne principal engineer Richard Vondrasek.

So far, CARIBU has only used stable metal ions for charge breeding, but testing has just begun using the radioactive isotopes from the californium source.

CARIBU is an Accelerator Improvement Project funded by the U.S. Department of Energy’s Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Brock Cooper (630/252-5565 or media@anl.gov) at Argonne.

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov
http://www.anl.gov/Media_Center/News/2010/news100412.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>