Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Approaching the Quantum World

09.06.2009
Using resolved sideband cooling combined with helium cryostats

MPQ scientists get close to the quantum limit of the eigenmodes of mesoscopic mechanical oscillators.

The observation of quantum phenomena in macroscopic mechanical oscillators has been a subject of interest since the inception of quantum mechanics. It may provide insights into the quantum-classical boundary and allow experimental investigation of the theory of quantum measurements.

In spite of great efforts, the minute displacements associated with quantum effects, and the random thermal motion of the oscillator have as yet precluded their direct observation. As a team around Prof Tobias Kippenberg (leader of the independent Max Planck junior research group "Laboratory of Photonics and Quantum Measurements" at Max Planck Institute of Quantum Optics in Garching and tenure track assistant professor at the ETH Lausanne (EPFL) in Switzerland) reports in Nature Physics (Advanced Online Publication, 7 June 2009, DOI 10. 1038/NPHYS1304) the ultimate quantum ground state of mesoscopic mechanical oscillators now seems to be in reach: Using a combination of cryogenic pre-cooling and resolved-sideband laser cooling the scientists were able to cool a microresonator down to a temperature that corresponds to about the 60-fold energy of the ultimate quantum ground state, and to reach a sensitivity in the displacement measurements of its mechanical vibrations that is only a hundred times above the fundamental Heisenberg limit.

A mechanical oscillator is an incarnation of a generic physical system, a harmonic oscillator. At the same time, it is, like a mass-on-a-spring or a simple pendulum, a part of every-day life. While it is generally experienced as a "classical" system, the physical theory of quantum mechanics predicts surprising effects both for the mechanical oscillator itself and for measurements made on it. For example, quantum mechanics dictates that such an oscillator fluctuates randomly around its equilibrium position - it basically never is at rest. At elevated temperatures, this may be due to the random kicks it experiences by hot gas molecules surrounding it, or the thermal Brownian motion of the molecules the oscillator is made of. However, according to quantum mechanics, the oscillator still has a non-zero motional energy even at zero temperature, and is therefore expected to still move randomly with minute amplitude. Even more, if one wants to measure the position of the oscillator, quantum mechanics requires that this disturbs its motion and makes it fluctuate even more. This so-called "quantum backaction" limits the sensitivity available in a displacement measurement, and gives rise to the "Heisenberg uncertainty limit".

So far, such effects have never been experimentally observed. Probing quantum effects in mechanical systems would, however, help to elucidate the boundary between the worlds governed by "classical" and "quantum" laws and to quantitatively verify the predictions made by quantum theory of measurements made on mechanical systems. This fascinating prospect has inspired researchers for decades to devise sophisticated devices expected to display quantum effects. However, they face two difficult experimental challenges: the elimination of thermal noise (such as the Brownian motion) and the detection of the minute position fluctuations associated with quantum effects. Recent research has focused on nanomechanical oscillators coupled to electronic measurement devices, but in spite of the low mass of the oscillators (making the quantum position fluctuations larger), the measurement sensitivity remained far from the Heisenberg limit.

Tobias Kippenberg and his team instead developed optomechanical systems made out of small glass rings, about 0.1 mm in diameter, which constitute high-quality mechanical oscillators with extremely small dissipation, swinging at very high frequency between 65 and 122 MHz. To cool the oscillator they use a combination of two techniques: Traditional cryogenic cooling is implemented by bringing the structure in contact with a low-pressure Helium gas at a temperature only 1.65 degree above absolute zero. They verified that the device is cooled to the same temperature, due to the clever design of the cryostat based on buffer gas cooling. Then, they additionally implemented resolved-sideband laser cooling, a technique inspired by atomic physics, which was adapted by the MPQ group to cool also mechanical oscillators. In that manner, they reduced the temperature of the oscillator to 200 mK. This corresponds to an occupation of about 60 quanta of motional energy in the oscillator, the lowest value obtained with an oscillator of such a high mass.

To measure the minute fluctuations of the oscillator's position, the researchers use optical interferometry. Ensuring that the noise in their measurement is as low as it can fundamentally be - determined only by the quantum fluctuations of the detected photon stream - the researchers achieved a displacement sensitivity on the level of a few attometers (1am=0.000000000000000001m) in one second averaging time. "But looking at the random fluctuations of the mechanical oscillator, we can also infer an upper limit to the degree to which our measurement has disturbed the mechanical oscillator, that is, we can quantify our measurement 'backaction'," explains Albert Schließer, PhD student on the experiment.

In this way the group has now proven that the employed optical measurement technique operates very close to the Heisenberg uncertainty limit. While still a factor of 100 above this fundamental limit, this is the closest approach yet demonstrated in an experiment. The ability to both cool the mechanical oscillator and make measurements close to the fundamental Heisenberg limit is pivotal for next generation experiments now set up at MPQ aiming to demonstrate effects like the quantum ground state, or quantum back action. [AS/OM]
Original publication:
Resolved Sideband Cooling and Position Measurement of a Micromechanical Oscillator close to the Heisenberg Uncertainty Limit.
A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T.J. Kippenberg
Nature Physics, DOI 10.1038/nphys1304 (2009)
Contact:
Prof. Dr. Tobias Kippenberg
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-mail: tobias.kippenberg@mpq.mpg.de
Albert Schließer
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 264
Fax: +49 - 89 / 32905 200
e-mail: albert.schliesser@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de/k-lab/
http://www.mpq.mpg.de/k-lab/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>