Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Approaching the Quantum World

09.06.2009
Using resolved sideband cooling combined with helium cryostats

MPQ scientists get close to the quantum limit of the eigenmodes of mesoscopic mechanical oscillators.

The observation of quantum phenomena in macroscopic mechanical oscillators has been a subject of interest since the inception of quantum mechanics. It may provide insights into the quantum-classical boundary and allow experimental investigation of the theory of quantum measurements.

In spite of great efforts, the minute displacements associated with quantum effects, and the random thermal motion of the oscillator have as yet precluded their direct observation. As a team around Prof Tobias Kippenberg (leader of the independent Max Planck junior research group "Laboratory of Photonics and Quantum Measurements" at Max Planck Institute of Quantum Optics in Garching and tenure track assistant professor at the ETH Lausanne (EPFL) in Switzerland) reports in Nature Physics (Advanced Online Publication, 7 June 2009, DOI 10. 1038/NPHYS1304) the ultimate quantum ground state of mesoscopic mechanical oscillators now seems to be in reach: Using a combination of cryogenic pre-cooling and resolved-sideband laser cooling the scientists were able to cool a microresonator down to a temperature that corresponds to about the 60-fold energy of the ultimate quantum ground state, and to reach a sensitivity in the displacement measurements of its mechanical vibrations that is only a hundred times above the fundamental Heisenberg limit.

A mechanical oscillator is an incarnation of a generic physical system, a harmonic oscillator. At the same time, it is, like a mass-on-a-spring or a simple pendulum, a part of every-day life. While it is generally experienced as a "classical" system, the physical theory of quantum mechanics predicts surprising effects both for the mechanical oscillator itself and for measurements made on it. For example, quantum mechanics dictates that such an oscillator fluctuates randomly around its equilibrium position - it basically never is at rest. At elevated temperatures, this may be due to the random kicks it experiences by hot gas molecules surrounding it, or the thermal Brownian motion of the molecules the oscillator is made of. However, according to quantum mechanics, the oscillator still has a non-zero motional energy even at zero temperature, and is therefore expected to still move randomly with minute amplitude. Even more, if one wants to measure the position of the oscillator, quantum mechanics requires that this disturbs its motion and makes it fluctuate even more. This so-called "quantum backaction" limits the sensitivity available in a displacement measurement, and gives rise to the "Heisenberg uncertainty limit".

So far, such effects have never been experimentally observed. Probing quantum effects in mechanical systems would, however, help to elucidate the boundary between the worlds governed by "classical" and "quantum" laws and to quantitatively verify the predictions made by quantum theory of measurements made on mechanical systems. This fascinating prospect has inspired researchers for decades to devise sophisticated devices expected to display quantum effects. However, they face two difficult experimental challenges: the elimination of thermal noise (such as the Brownian motion) and the detection of the minute position fluctuations associated with quantum effects. Recent research has focused on nanomechanical oscillators coupled to electronic measurement devices, but in spite of the low mass of the oscillators (making the quantum position fluctuations larger), the measurement sensitivity remained far from the Heisenberg limit.

Tobias Kippenberg and his team instead developed optomechanical systems made out of small glass rings, about 0.1 mm in diameter, which constitute high-quality mechanical oscillators with extremely small dissipation, swinging at very high frequency between 65 and 122 MHz. To cool the oscillator they use a combination of two techniques: Traditional cryogenic cooling is implemented by bringing the structure in contact with a low-pressure Helium gas at a temperature only 1.65 degree above absolute zero. They verified that the device is cooled to the same temperature, due to the clever design of the cryostat based on buffer gas cooling. Then, they additionally implemented resolved-sideband laser cooling, a technique inspired by atomic physics, which was adapted by the MPQ group to cool also mechanical oscillators. In that manner, they reduced the temperature of the oscillator to 200 mK. This corresponds to an occupation of about 60 quanta of motional energy in the oscillator, the lowest value obtained with an oscillator of such a high mass.

To measure the minute fluctuations of the oscillator's position, the researchers use optical interferometry. Ensuring that the noise in their measurement is as low as it can fundamentally be - determined only by the quantum fluctuations of the detected photon stream - the researchers achieved a displacement sensitivity on the level of a few attometers (1am=0.000000000000000001m) in one second averaging time. "But looking at the random fluctuations of the mechanical oscillator, we can also infer an upper limit to the degree to which our measurement has disturbed the mechanical oscillator, that is, we can quantify our measurement 'backaction'," explains Albert Schließer, PhD student on the experiment.

In this way the group has now proven that the employed optical measurement technique operates very close to the Heisenberg uncertainty limit. While still a factor of 100 above this fundamental limit, this is the closest approach yet demonstrated in an experiment. The ability to both cool the mechanical oscillator and make measurements close to the fundamental Heisenberg limit is pivotal for next generation experiments now set up at MPQ aiming to demonstrate effects like the quantum ground state, or quantum back action. [AS/OM]
Original publication:
Resolved Sideband Cooling and Position Measurement of a Micromechanical Oscillator close to the Heisenberg Uncertainty Limit.
A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T.J. Kippenberg
Nature Physics, DOI 10.1038/nphys1304 (2009)
Contact:
Prof. Dr. Tobias Kippenberg
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-mail: tobias.kippenberg@mpq.mpg.de
Albert Schließer
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 264
Fax: +49 - 89 / 32905 200
e-mail: albert.schliesser@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de/k-lab/
http://www.mpq.mpg.de/k-lab/

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>