Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Approaching the Quantum World

Using resolved sideband cooling combined with helium cryostats

MPQ scientists get close to the quantum limit of the eigenmodes of mesoscopic mechanical oscillators.

The observation of quantum phenomena in macroscopic mechanical oscillators has been a subject of interest since the inception of quantum mechanics. It may provide insights into the quantum-classical boundary and allow experimental investigation of the theory of quantum measurements.

In spite of great efforts, the minute displacements associated with quantum effects, and the random thermal motion of the oscillator have as yet precluded their direct observation. As a team around Prof Tobias Kippenberg (leader of the independent Max Planck junior research group "Laboratory of Photonics and Quantum Measurements" at Max Planck Institute of Quantum Optics in Garching and tenure track assistant professor at the ETH Lausanne (EPFL) in Switzerland) reports in Nature Physics (Advanced Online Publication, 7 June 2009, DOI 10. 1038/NPHYS1304) the ultimate quantum ground state of mesoscopic mechanical oscillators now seems to be in reach: Using a combination of cryogenic pre-cooling and resolved-sideband laser cooling the scientists were able to cool a microresonator down to a temperature that corresponds to about the 60-fold energy of the ultimate quantum ground state, and to reach a sensitivity in the displacement measurements of its mechanical vibrations that is only a hundred times above the fundamental Heisenberg limit.

A mechanical oscillator is an incarnation of a generic physical system, a harmonic oscillator. At the same time, it is, like a mass-on-a-spring or a simple pendulum, a part of every-day life. While it is generally experienced as a "classical" system, the physical theory of quantum mechanics predicts surprising effects both for the mechanical oscillator itself and for measurements made on it. For example, quantum mechanics dictates that such an oscillator fluctuates randomly around its equilibrium position - it basically never is at rest. At elevated temperatures, this may be due to the random kicks it experiences by hot gas molecules surrounding it, or the thermal Brownian motion of the molecules the oscillator is made of. However, according to quantum mechanics, the oscillator still has a non-zero motional energy even at zero temperature, and is therefore expected to still move randomly with minute amplitude. Even more, if one wants to measure the position of the oscillator, quantum mechanics requires that this disturbs its motion and makes it fluctuate even more. This so-called "quantum backaction" limits the sensitivity available in a displacement measurement, and gives rise to the "Heisenberg uncertainty limit".

So far, such effects have never been experimentally observed. Probing quantum effects in mechanical systems would, however, help to elucidate the boundary between the worlds governed by "classical" and "quantum" laws and to quantitatively verify the predictions made by quantum theory of measurements made on mechanical systems. This fascinating prospect has inspired researchers for decades to devise sophisticated devices expected to display quantum effects. However, they face two difficult experimental challenges: the elimination of thermal noise (such as the Brownian motion) and the detection of the minute position fluctuations associated with quantum effects. Recent research has focused on nanomechanical oscillators coupled to electronic measurement devices, but in spite of the low mass of the oscillators (making the quantum position fluctuations larger), the measurement sensitivity remained far from the Heisenberg limit.

Tobias Kippenberg and his team instead developed optomechanical systems made out of small glass rings, about 0.1 mm in diameter, which constitute high-quality mechanical oscillators with extremely small dissipation, swinging at very high frequency between 65 and 122 MHz. To cool the oscillator they use a combination of two techniques: Traditional cryogenic cooling is implemented by bringing the structure in contact with a low-pressure Helium gas at a temperature only 1.65 degree above absolute zero. They verified that the device is cooled to the same temperature, due to the clever design of the cryostat based on buffer gas cooling. Then, they additionally implemented resolved-sideband laser cooling, a technique inspired by atomic physics, which was adapted by the MPQ group to cool also mechanical oscillators. In that manner, they reduced the temperature of the oscillator to 200 mK. This corresponds to an occupation of about 60 quanta of motional energy in the oscillator, the lowest value obtained with an oscillator of such a high mass.

To measure the minute fluctuations of the oscillator's position, the researchers use optical interferometry. Ensuring that the noise in their measurement is as low as it can fundamentally be - determined only by the quantum fluctuations of the detected photon stream - the researchers achieved a displacement sensitivity on the level of a few attometers (1am=0.000000000000000001m) in one second averaging time. "But looking at the random fluctuations of the mechanical oscillator, we can also infer an upper limit to the degree to which our measurement has disturbed the mechanical oscillator, that is, we can quantify our measurement 'backaction'," explains Albert Schließer, PhD student on the experiment.

In this way the group has now proven that the employed optical measurement technique operates very close to the Heisenberg uncertainty limit. While still a factor of 100 above this fundamental limit, this is the closest approach yet demonstrated in an experiment. The ability to both cool the mechanical oscillator and make measurements close to the fundamental Heisenberg limit is pivotal for next generation experiments now set up at MPQ aiming to demonstrate effects like the quantum ground state, or quantum back action. [AS/OM]
Original publication:
Resolved Sideband Cooling and Position Measurement of a Micromechanical Oscillator close to the Heisenberg Uncertainty Limit.
A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T.J. Kippenberg
Nature Physics, DOI 10.1038/nphys1304 (2009)
Prof. Dr. Tobias Kippenberg
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
Albert Schließer
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 264
Fax: +49 - 89 / 32905 200
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

More VideoLinks >>>