Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Apollo 11 Moon Rocks Still Crucial 40 Years Later

21.07.2009
A lunar geochemist at Washington University in St. Louis says that there are still many answers to be gleaned from the moon rocks collected by the Apollo 11 astronauts on their historic moonwalk 40 years ago July 20.

And he credits another WUSTL professor for the fact that the astronauts even collected the moon rocks in the first place.

Randy L. Korotev, Ph.D., a research professor in the Department of Earth and Planetary Sciences in Arts & Sciences, has studied lunar samples and their chemical compositions since he was an undergraduate at the University of Wisconsin and "was in the right place at the right time" in 1969 to be a part of a team to study some of the first lunar samples.

"We know even more now and can ask smarter questions as we research these samples," says Korotev, who is mainly interested in studying the impact history of the moon, how the moon's surface has been affected by meteorite impacts and the nature of the early lunar crust.

"There are still some answers, we believe, in the Apollo 11 mission.

"We went to the moon and collected samples before we knew much about the moon. We didn't totally understand the big concept of what the moon was like until early 2000 as a result of missions that orbited the moon collecting mineralogical and compositional data.

"It's only been fairly recently that we decided that we should look closer at these Apollo 11 samples."

Korotev credits the late Robert M. Walker, Ph.D., Washington University's McDonnell Professor of Physics in Arts & Sciences, and a handful of other scientists for the fact that there are even moon samples to study.

"Bringing samples back from the moon wasn't the point of the mission," says Korotev. "It was really about politics. It took scientists like Bob Walker to bring these samples back — to show the value of them for research.

"Bob convinced them to build a receiving lab for the samples and advised them on the handling and storage of them.

"We didn't' go to the moon to collect rocks, so we scientists are really lucky that we have this collection."

Korotev points out that by the last Apollo mission — Apollo 17 — one of the astronauts onboard was a geologist, Harrison H. Schmitt.

WUSTL's moon history

Walker was recruited to serve on the scientific team that advised NASA on the handling and distribution of moon rocks and soil samples from the first Apollo missions. That team distributed Apollo 11 samples to some 150 laboratories worldwide, including WUSTL.

Walker also briefed those early astronauts about what to expect on the rocky, dusty moon surface.

In an interview some months after the first moon samples arrived in WUSTL's space sciences lab, Walker recalled the excitement of that momentous day in 1969: "We felt just like a bunch of kids who were suddenly given a brand new toy store ... there was so much to do, we hardly knew where to begin."

Ghislaine Crozaz, Ph.D., professor of earth and planetary sciences emerita in Arts & Sciences at Washington University and a member of Walker's space sciences group that was one of those selected to study the first lunar samples, says the event is "as vivid in my mind as if it had happened yesterday."

Crozaz says that the team studied the cosmic rays and radiation history of the lunar samples mainly using nuclear particle tracks, which were revealed by techniques invented by Walker.

"After we received the samples in early September, we worked like hell until the First Lunar Science Conference in early January 1970 in Houston, where we arrived with our Science paper after having worked 'incommunicado' for 4 months."

In their study of the lunar materials, Walker's laboratory led the way in deciphering their record of lunar, solar system and galactic evolution. Of special importance was the information they gave on the history of solar radiation and cosmic rays.

Crozaz, who later became Walker's wife, says the lunar samples provided insights into the history of the solar system that couldn't be achieved at the time by looking at meteorites found on Earth. The intense heat encountered during their passage through the atmosphere would have erased much of the record of radiation the meteorites carried.

The Apollo 11 samples— and samples from almost every Apollo mission until the last one in December 1972 — have been securely housed on the 4th floor of the physics department's Compton Laboratory and used by numerous WUSTL researchers, including many members of the McDonnell Center for the Space Sciences. The McDonnell Center was established in 1974, with Walker as its inaugural director.

Today, the remaining lunar samples in Compton Hall that arrived in 1969 from the Apollo 11 mission and from subsequent Apollo missions in the 1970s are being painstakingly prepared for a return trip to Houston to NASA's moon rocks repository, the Lunar Sample Building at the Lyndon B. Johnson Space Center in Houston, Texas.

"The samples have been exhaustively analyzed and numerous papers have been published showing interesting research results," says Ernst K. Zinner, Ph.D., research professor of physics and of earth and planetary sciences, who joined Walker's lab in 1972 studying Apollo mission samples before focusing on analysis of stellar dust grains found in primitive meteorites.

"We have finished analyzing these particular samples and we're focusing on other extraterrestrial samples. In a sense, our lab in Compton has moved from the moon to the stars in our research interests.

"It is a great and serious responsibility to hold and guard these samples, which are absolutely irreplaceable."

In the meantime, in the Earth and Planetary Sciences Building, next door to Compton Hall, Korotev, who received his Apollo 11 samples from NASA much later — not until 2005 — still has much work to do with his samples, which have been chemically analyzed and are sealed in tubes and securely stored away for now.

"You can look at the moon and know that the moon has been hit a lot by very large meteorites," says Korotev. "We know this occurred some 3.9 billion years ago.

"We don't know, however, the history of large meteorites hitting the Earth — we can't see those impacts because they would have been erased by Earth's active geology.

"We want to see if meteorite bombardment on the moon coincided with what was happening on Earth, and, in turn, with life starting on Earth," says Korotev, who as a 20-year-old chemistry major in 1969, decided his career path after working with the Apollo 11 rocks.

"The whole experience decided my career. I went to graduate school in 1971 to study lunar geochemistry so that I'd know how to interpret the chemical data we obtained in terms of lunar geology. That's what I'm still doing!"

Susan Killenberg McGinn | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>