Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Apollo 11 Moon Rocks Still Crucial 40 Years Later

21.07.2009
A lunar geochemist at Washington University in St. Louis says that there are still many answers to be gleaned from the moon rocks collected by the Apollo 11 astronauts on their historic moonwalk 40 years ago July 20.

And he credits another WUSTL professor for the fact that the astronauts even collected the moon rocks in the first place.

Randy L. Korotev, Ph.D., a research professor in the Department of Earth and Planetary Sciences in Arts & Sciences, has studied lunar samples and their chemical compositions since he was an undergraduate at the University of Wisconsin and "was in the right place at the right time" in 1969 to be a part of a team to study some of the first lunar samples.

"We know even more now and can ask smarter questions as we research these samples," says Korotev, who is mainly interested in studying the impact history of the moon, how the moon's surface has been affected by meteorite impacts and the nature of the early lunar crust.

"There are still some answers, we believe, in the Apollo 11 mission.

"We went to the moon and collected samples before we knew much about the moon. We didn't totally understand the big concept of what the moon was like until early 2000 as a result of missions that orbited the moon collecting mineralogical and compositional data.

"It's only been fairly recently that we decided that we should look closer at these Apollo 11 samples."

Korotev credits the late Robert M. Walker, Ph.D., Washington University's McDonnell Professor of Physics in Arts & Sciences, and a handful of other scientists for the fact that there are even moon samples to study.

"Bringing samples back from the moon wasn't the point of the mission," says Korotev. "It was really about politics. It took scientists like Bob Walker to bring these samples back — to show the value of them for research.

"Bob convinced them to build a receiving lab for the samples and advised them on the handling and storage of them.

"We didn't' go to the moon to collect rocks, so we scientists are really lucky that we have this collection."

Korotev points out that by the last Apollo mission — Apollo 17 — one of the astronauts onboard was a geologist, Harrison H. Schmitt.

WUSTL's moon history

Walker was recruited to serve on the scientific team that advised NASA on the handling and distribution of moon rocks and soil samples from the first Apollo missions. That team distributed Apollo 11 samples to some 150 laboratories worldwide, including WUSTL.

Walker also briefed those early astronauts about what to expect on the rocky, dusty moon surface.

In an interview some months after the first moon samples arrived in WUSTL's space sciences lab, Walker recalled the excitement of that momentous day in 1969: "We felt just like a bunch of kids who were suddenly given a brand new toy store ... there was so much to do, we hardly knew where to begin."

Ghislaine Crozaz, Ph.D., professor of earth and planetary sciences emerita in Arts & Sciences at Washington University and a member of Walker's space sciences group that was one of those selected to study the first lunar samples, says the event is "as vivid in my mind as if it had happened yesterday."

Crozaz says that the team studied the cosmic rays and radiation history of the lunar samples mainly using nuclear particle tracks, which were revealed by techniques invented by Walker.

"After we received the samples in early September, we worked like hell until the First Lunar Science Conference in early January 1970 in Houston, where we arrived with our Science paper after having worked 'incommunicado' for 4 months."

In their study of the lunar materials, Walker's laboratory led the way in deciphering their record of lunar, solar system and galactic evolution. Of special importance was the information they gave on the history of solar radiation and cosmic rays.

Crozaz, who later became Walker's wife, says the lunar samples provided insights into the history of the solar system that couldn't be achieved at the time by looking at meteorites found on Earth. The intense heat encountered during their passage through the atmosphere would have erased much of the record of radiation the meteorites carried.

The Apollo 11 samples— and samples from almost every Apollo mission until the last one in December 1972 — have been securely housed on the 4th floor of the physics department's Compton Laboratory and used by numerous WUSTL researchers, including many members of the McDonnell Center for the Space Sciences. The McDonnell Center was established in 1974, with Walker as its inaugural director.

Today, the remaining lunar samples in Compton Hall that arrived in 1969 from the Apollo 11 mission and from subsequent Apollo missions in the 1970s are being painstakingly prepared for a return trip to Houston to NASA's moon rocks repository, the Lunar Sample Building at the Lyndon B. Johnson Space Center in Houston, Texas.

"The samples have been exhaustively analyzed and numerous papers have been published showing interesting research results," says Ernst K. Zinner, Ph.D., research professor of physics and of earth and planetary sciences, who joined Walker's lab in 1972 studying Apollo mission samples before focusing on analysis of stellar dust grains found in primitive meteorites.

"We have finished analyzing these particular samples and we're focusing on other extraterrestrial samples. In a sense, our lab in Compton has moved from the moon to the stars in our research interests.

"It is a great and serious responsibility to hold and guard these samples, which are absolutely irreplaceable."

In the meantime, in the Earth and Planetary Sciences Building, next door to Compton Hall, Korotev, who received his Apollo 11 samples from NASA much later — not until 2005 — still has much work to do with his samples, which have been chemically analyzed and are sealed in tubes and securely stored away for now.

"You can look at the moon and know that the moon has been hit a lot by very large meteorites," says Korotev. "We know this occurred some 3.9 billion years ago.

"We don't know, however, the history of large meteorites hitting the Earth — we can't see those impacts because they would have been erased by Earth's active geology.

"We want to see if meteorite bombardment on the moon coincided with what was happening on Earth, and, in turn, with life starting on Earth," says Korotev, who as a 20-year-old chemistry major in 1969, decided his career path after working with the Apollo 11 rocks.

"The whole experience decided my career. I went to graduate school in 1971 to study lunar geochemistry so that I'd know how to interpret the chemical data we obtained in terms of lunar geology. That's what I'm still doing!"

Susan Killenberg McGinn | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>