Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Apollo's Lunar Dust Data Being Restored

07.12.2012
Forty years after the last Apollo spacecraft launched, the science from those missions continues to shape our view of the moon. In one of the latest developments, readings from the Apollo 14 and 15 dust detectors have been restored by scientists with the National Space Science Data Center (NSSDC) at NASA's Goddard Space Flight Center in Greenbelt, Md.

"This is the first look at the fully calibrated, digital dust data from the Apollo 14 and 15 missions," said David Williams, a Goddard scientist and data specialist at NSSDC, NASA's permanent archive for space science mission data.


An Apollo 14 astronaut deploys the Apollo Lunar Surface Experiments Package's power source (foreground) and "Central Station" (background), where the Lunar Dust Detector was mounted. Credit: NASA/JSC

The newly available data will make long-term analysis of the Apollo dust readings possible. Digital data from these two experiments were not archived before, and it's thought that roughly the last year-and-a-half of the data have never been studied.

The work was presented on December 6 at the American Geophysical Union meeting in San Francisco, as part of a session organized in honor of the 40th anniversary of the Apollo 17 launch. Also presented in this session was a similar effort to fill in gaps in the Apollo 15 and 17 heat-flow measurements, the only such measurements ever taken on the moon or any planetary body other than Earth.

The recovery of these data sets is part of the Lunar Data Project, an ongoing NSSDC effort, drawing on researchers at multiple institutions, to make the scientific data from Apollo available in modern formats.

The Lunar Dust Detectors that were placed on the lunar surface during Apollo 14 and 15 measured dust accumulation, temperature and damage caused by high-energy cosmic particles and the sun's ultraviolet radiation. The same kind of instrument had flown earlier on Apollo 11 and 12 (Later, Apollo 17 carried a different type of dust detector).

Restoring the data was a painstaking job of going through one data set and separating the raw detector counts from temperatures and "housekeeping" information that was collected to keep an eye on how healthy the Apollo instruments were. A second, less complete data set indicated how to convert the raw counts into usable measurements. But first, the second data set had to be converted from microfilm, which had been archived at NSSDC in the 1970s, and the two data sets had to reconciled because their time points didn't match up exactly. Most of this meticulous work was carried out by Marie McBride, an undergraduate from the Florida Institute of Technology in Melbourne who was working with Williams through a NASA internship.

Newer missions, such as NASA's Lunar Reconnaissance Orbiter (LRO), have continued to study lunar dust. "It's one of those questions that scientists keep coming back to," said McBride.

"Just last week, LRO did some important measurements seeking dust profiles in the lunar atmosphere," said Rich Vondrak, the LRO deputy project scientist at NASA Goddard. LRO has been orbiting the moon since June 2009, and the mission was recently extended through 2015.

And the main objective of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), scheduled to launch in 2013, is to characterize the moon's atmosphere and dust environment.

This offers another example of how profoundly influential the Apollo data continues to be, observed Noah Petro, a member of the LRO project science team at NASA Goddard. "A mission ends when it ends, but the science continues forever."

Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.

Elizabeth Zubritsky | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/solarsystem/features/moon-view.html

More articles from Physics and Astronomy:

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>