Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Phoenix Atmosphere Suggests Urban Growth Policies

18.06.2010
Atmospheric research often focuses on clouds’ impact on weather and climate. Yet even low clouds are a long way off, with a base some 6,000 feet above earth. University of Notre Dame fluid dynamics and engineering professor Harindra Fernando works the other end of the air column closer to home—the bottom of the atmosphere in the city, which is known as the urban boundary layer. A report on his team’s work appears in a recent journal article in Physics of Fluids, which is published by the American Institute of Physics (AIP).

The goal is to understand atmospheric impact on people’s health and comfort due to elements such as wind and airborne particle flow, dispersal and transport. Think of it as the physics of comfort. Dr. Fernando puts it this way: "The urban boundary layer of the atmosphere is where people live. And the long term-viability of cities and our ability to assure a high quality of urban life is affected by how clean our environment is and how fast it is changing by human impacts."

Dr. Fernando’s team used fluid mechanics to understand flow and help devise mathematic models to predict periods of high particulate pollution that affect human health and periods of extreme temperature impacting human comfort. Explains Dr. Fernando, who also is an emeritus professor at Arizona State University: "Our team started applying fluid dynamic analysis in a rapid urban growth situation of Phoenix because it is a useful test bed for developing an understanding of complex processes. We then built models to provide a basis for sound growth policy. Even though they must be further validated in the field, now policy and decision makers come to us for guidance. It’s been very encouraging, because we want our cities and their residents to flourish."

The article, "Flow, turbulence, and pollutant dispersion in urban atmospheres" by H. J. S. Fernando et al was published on May 13, 2010 in the journal Physics of Fluids. See: http://link.aip.org/link/PHFLE6/v22/i5/p051301/s1

... more about:
»AIP »Analysis »PHOENIX »Physic »atmosphere

Journalists may request a free PDF of this article by contacting jbardi@aip.org.

ABOUT PHYSICS OF FLUIDS
Physics of Fluids is published by the American Institute of Physics with the cooperation of The American Physical Society Division of Fluid Dynamics. The journal is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. Content is published online daily and collected into monthly online and printed issues (12 issues per year). See: http://pof.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

Further reports about: AIP Analysis PHOENIX Physic atmosphere

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>