Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Analysis of Phoenix Atmosphere Suggests Urban Growth Policies

Atmospheric research often focuses on clouds’ impact on weather and climate. Yet even low clouds are a long way off, with a base some 6,000 feet above earth. University of Notre Dame fluid dynamics and engineering professor Harindra Fernando works the other end of the air column closer to home—the bottom of the atmosphere in the city, which is known as the urban boundary layer. A report on his team’s work appears in a recent journal article in Physics of Fluids, which is published by the American Institute of Physics (AIP).

The goal is to understand atmospheric impact on people’s health and comfort due to elements such as wind and airborne particle flow, dispersal and transport. Think of it as the physics of comfort. Dr. Fernando puts it this way: "The urban boundary layer of the atmosphere is where people live. And the long term-viability of cities and our ability to assure a high quality of urban life is affected by how clean our environment is and how fast it is changing by human impacts."

Dr. Fernando’s team used fluid mechanics to understand flow and help devise mathematic models to predict periods of high particulate pollution that affect human health and periods of extreme temperature impacting human comfort. Explains Dr. Fernando, who also is an emeritus professor at Arizona State University: "Our team started applying fluid dynamic analysis in a rapid urban growth situation of Phoenix because it is a useful test bed for developing an understanding of complex processes. We then built models to provide a basis for sound growth policy. Even though they must be further validated in the field, now policy and decision makers come to us for guidance. It’s been very encouraging, because we want our cities and their residents to flourish."

The article, "Flow, turbulence, and pollutant dispersion in urban atmospheres" by H. J. S. Fernando et al was published on May 13, 2010 in the journal Physics of Fluids. See:

... more about:
»AIP »Analysis »PHOENIX »Physic »atmosphere

Journalists may request a free PDF of this article by contacting

Physics of Fluids is published by the American Institute of Physics with the cooperation of The American Physical Society Division of Fluid Dynamics. The journal is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. Content is published online daily and collected into monthly online and printed issues (12 issues per year). See:
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:

Further reports about: AIP Analysis PHOENIX Physic atmosphere

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>