Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Phoenix Atmosphere Suggests Urban Growth Policies

18.06.2010
Atmospheric research often focuses on clouds’ impact on weather and climate. Yet even low clouds are a long way off, with a base some 6,000 feet above earth. University of Notre Dame fluid dynamics and engineering professor Harindra Fernando works the other end of the air column closer to home—the bottom of the atmosphere in the city, which is known as the urban boundary layer. A report on his team’s work appears in a recent journal article in Physics of Fluids, which is published by the American Institute of Physics (AIP).

The goal is to understand atmospheric impact on people’s health and comfort due to elements such as wind and airborne particle flow, dispersal and transport. Think of it as the physics of comfort. Dr. Fernando puts it this way: "The urban boundary layer of the atmosphere is where people live. And the long term-viability of cities and our ability to assure a high quality of urban life is affected by how clean our environment is and how fast it is changing by human impacts."

Dr. Fernando’s team used fluid mechanics to understand flow and help devise mathematic models to predict periods of high particulate pollution that affect human health and periods of extreme temperature impacting human comfort. Explains Dr. Fernando, who also is an emeritus professor at Arizona State University: "Our team started applying fluid dynamic analysis in a rapid urban growth situation of Phoenix because it is a useful test bed for developing an understanding of complex processes. We then built models to provide a basis for sound growth policy. Even though they must be further validated in the field, now policy and decision makers come to us for guidance. It’s been very encouraging, because we want our cities and their residents to flourish."

The article, "Flow, turbulence, and pollutant dispersion in urban atmospheres" by H. J. S. Fernando et al was published on May 13, 2010 in the journal Physics of Fluids. See: http://link.aip.org/link/PHFLE6/v22/i5/p051301/s1

... more about:
»AIP »Analysis »PHOENIX »Physic »atmosphere

Journalists may request a free PDF of this article by contacting jbardi@aip.org.

ABOUT PHYSICS OF FLUIDS
Physics of Fluids is published by the American Institute of Physics with the cooperation of The American Physical Society Division of Fluid Dynamics. The journal is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. Content is published online daily and collected into monthly online and printed issues (12 issues per year). See: http://pof.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

Further reports about: AIP Analysis PHOENIX Physic atmosphere

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>