Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AMS experiment takes off for Kennedy Space Center

19.08.2010
The Alpha Magnetic Spectrometer (AMS), an experiment that will search for antimatter and dark matter in space, leaves CERN1 next Tuesday on the next leg of its journey to the International Space Station. The AMS detector2 is being transported from CERN to Geneva International Airport in preparation for its planned departure from Switzerland on 26 August, when it will be flown to the Kennedy Space Center in Florida on board a US Air Force Galaxy transport aircraft.

A press conference to mark the occasion will be held at the press room of Geneva International Airport at 9:00 CEST on 25 August, and journalists will have the opportunity to visit the AMS detector and the aircraft. Those wishing to attend to the visit should contact the CERN press office by 12:00 CEST on Monday 23 August at the latest, providing their nationality, date of birth and passport or identity card number. This document must also be presented before the visit. Please note that only the people who have registered will be able to go on the apron to visit the AMS detector and the aircraft. Journalists who would like to see the arrival of the AMS detector at Kennedy Space Center on 26 August are invited to apply until 19 August. Details are available from ESA: http://www.esa.int/esaCP/SEM0R65OJCG_index_0.html.

AMS will examine fundamental issues about matter and the origin and structure of the Universe directly from space. Its main scientific target is the search for dark matter and antimatter, in a programme that is complementary to that of the Large Hadron Collider.

Last February the AMS detector travelled from CERN to the European Space Research and Technology Centre (ESTEC) in Noordwijk (Netherlands) for testing to certify its readiness for travel into space. Following the completion of the testing, the AMS collaboration decided to return the detector to CERN for final modifications. In particular, the detector’s superconducting magnet was replaced by the permanent magnet from the AMS-01 prototype, which had already flown into space in 1998. The reason for the decision was that the operational lifetime of the superconducting magnet would have been limited to three years, because there is no way of refilling the magnet with liquid helium, necessary to maintain the magnet’s superconductivity, on board the space station. The permanent magnet, on the other hand, will now allow the experiment to remain operational for the entire lifetime of the ISS.

Following its return to CERN, the AMS detector was therefore reconfigured with the permanent magnet before being tested with CERN particle beams. The tests were used to validate and calibrate the new configuration before the detector leaves Europe for the last time.

“The entire AMS collaboration is delighted by this departure, because it marks a crucial milestone for the experiment. We are getting close to the space shuttle launch and the moment when our detector will finally be installed on board the ISS,” explained Professor Sam Ting, Nobel laureate and spokesman for the experiment. “The detector’s construction phase is now finished and we are eager for the data collection phase to begin.”

“The launch of AMS detector is very timely,” added Roberto Petronzio, President of the Italian National Institute for Nuclear Physics. “Today we are well aware of our ignorance of Universe’s most abundant constituents and we still challenge the puzzle of matter-antimatter asymmetry. Furthermore, recent results from the Pamela experiment suggest scenarios for important discoveries for AMS. The experiment stems from a large international collaboration joining the effort of major European funding agencies with the US and China.”

Upon arrival at the Kennedy Space Center, AMS will be installed in a clean room for a few more tests. A few weeks later, the detector will be moved to the space shuttle. NASA is planning the last flight of the space shuttle programme, which will carry AMS into space, for the end of February 2011.

Once docked to the ISS, AMS will search for antimatter and dark matter by measuring cosmic rays. Data collected in space by AMS will be transmitted to Houston (USA) and on to CERN’s Prévessin site, where the detector control centre will be located, and to a number of regional physics analysis centres set up by the collaborating institutes.

"We are proud that this detector, which will play such an important role, will be flown from Geneva International Airport to the Kennedy Space Center in Florida," said Robert Deillon, General Manager of Geneva International Airport.

Contact
CERN Press Office, press.office@cern.ch
+41 22 767 34 32
+41 22 767 21 41
1.CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

2.The AMS detector components were produced by an international team, with substantial contributions from CERN Member States (Germany, France, Italy, Spain, Portugal and Switzerland), and from China (Taipei) and the United States. The detector was assembled at CERN, with the assistance of the Laboratory’s technical services.

| CERN Press Office
Further information:
http://www.ams02.org/
http://www.cern.ch
http://press.web.cern.ch/press/PressReleases/Releases2010/PR16.10E.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>