Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The AMS detector heads for the International Space Station

27.04.2011
The AMS particle detector will take off on 29 April 2011 at 21.47 CEST onboard the very last mission of the space Shuttle Endeavour. AMS, the Alpha Magnetic Spectrometer, will then be installed on the International Space Station from where it will explore the Universe for a period of over 10 years. AMS will address some of the most exciting mysteries of modern physics, looking for antimatter and dark matter in space, phenomena that have remained elusive up to now.

In laboratories like CERN*, physicists observe matter and antimatter behaving in an almost identical way. Each matter particle has an equivalent antiparticle, very similar but with opposite charge. When particles of matter and antimatter meet, they annihilate. Matter and antimatter would have been created in equal amounts at the Big Bang, yet today we live in a Universe apparently made entirely of matter.

Does nature have a preference for matter over antimatter? One of the main challenges of AMS will be to address this question by searching for single nuclei of antimatter that would signal the existence of large amounts of antimatter elsewhere in the Universe. To achieve this, AMS will track cosmic rays from outer space with unprecedented sensitivity.

“The cosmos is the ultimate laboratory,” said Nobel laureate and AMS Spokesperson Samuel Ting. “From its vantage point in space, AMS will explore such issues as Antimatter, Dark Matter and the origin of Cosmic Rays. However, its most exciting objective is to probe the unknown because whenever new levels of sensitivities are reached in exploring an unchartered realm, exciting and unimagined discoveries may be expected. “

In the same way that telescopes catch the light from the stars to better understand the Universe, AMS is a particle detector that will track incoming charged particles such as protons, electrons and atomic nuclei that constantly bombard our planet. By studying the flux of these cosmic rays with very high precision, AMS will have the sensitivity to identify a single antinucleus among a billion other particles.

“This is a very exciting moment for basic science,” said CERN Director General Rolf Heuer. “We expect interesting complementarities between AMS and the LHC. They look at similar questions from different angles, giving us parallel ways of addressing some of the Universe’s mysteries.”

AMS may also bring an important contribution to the search for the mysterious dark matter that would account for about 25% of the total mass-energy balance of the Universe. In particular, if dark matter is composed of supersymmetric particles, AMS could detect it indirectly by recording an anomaly in the flux of cosmic rays.

“Never in the history of science have we been so aware of our ignorance,” said AMS Deputy Spokesperson Roberto Battiston. “Today we know that we do not know anything about what makes up 95% of our Universe”.

AMS is a CERN recognized experiment and as such has benefited from CERN’s expertise in integrating large projects, from CERN’s vacuum and magnet groups and from test beam facilities for calibrating the detectors. In addition, the Payload Operation Centre (POC) of AMS will open in June 2011 at CERN, very near to the place where the AMS detector was assembled in clean room facilities. From the POC, physicists will be able to run the AMS detector as well as receive and analyse data arriving from the International Space Station.

AMS is the result of a large international collaboration with a major European participation. It is led by Nobel laureate Samuel Ting and involves about 600 researchers from CERN Member States (Denmark, Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, Switzerland) as well as from China, Korea, Mexico, Taiwan, and the United-States.

Follow the launch of AMS live:

The launch of AMS can be followed live via webcast at: http://webcast.cern.ch
Questions can be asked during the webcast by sending them to @cern on twitter

The live will also be broadcasted through EBU Eurovision services.
A VNR preview will be broadcasted on 28 April 2011, 10:00 - 10:15 GMT.
More information on http://www.eurovision.net/

Videos are available at: http://bit.ly/cernamsfootage
Videos are subject to the CDS conditions of use: http://bit.ly/CDSconditionsofuse

For updates about AMS, follow @astroparticle and @ams_02

Information about AMS can be found at www.ams02.org

Contacts:
CERN Press Office, press.office@cern.ch
+41 22 767 37 09
+41 22 767 34 32
+41 22 767 21 41

Leaders of AMS in Europe:

Denmark | Jes Madsen (Aarhus University) |
jesm@phys.au.dk

France | Sylvie Rosier-Lees (CNRS) | rosier@lapp.in2p3.fr |
Mobile: +33 6 33 40 24 48

Finland | Eino Valtonen (SRL) | eikka@utu.fi |
+358 2 333 5644

Germany | Stefan Schael (RWTH) | schael@physik.rwth-aachen.de |
Mobile: +49 173 721 721 2

Italy | Roberto Battiston (INFN) | roberto.battiston@pg.infn.it |
Mobile: +39 366 687 2527

The Netherlands | Johannes van Es (NLR) | jvanes@nlr.nl

Portugal | Fernando Barao (LIP) | barao@lip.pt |: +351 21 797 3880

Spain | Manuel Aguilar (CIEMAT) | manuel.aguilar@ciemat.es |
+34 636959701 | +34 91 2466589

Switzerland | Martin Pohl (UNIGE) | martin.pohl@cern.ch |
Mobile: +41 76 487 0405

Follow CERN at:
www.cern.ch
http://twitter.com/cern/
http://www.youtube.com/user/CERNTV
http://www.quantumdiaries.org/

| CERN Press Office
Further information:
http://www.cern.ch

Further reports about: AMS Big Bang CERN CERN’s Netherlands Nobel Prize Space Universe cosmic ray dark matter

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>