Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The AMS detector heads for the International Space Station

27.04.2011
The AMS particle detector will take off on 29 April 2011 at 21.47 CEST onboard the very last mission of the space Shuttle Endeavour. AMS, the Alpha Magnetic Spectrometer, will then be installed on the International Space Station from where it will explore the Universe for a period of over 10 years. AMS will address some of the most exciting mysteries of modern physics, looking for antimatter and dark matter in space, phenomena that have remained elusive up to now.

In laboratories like CERN*, physicists observe matter and antimatter behaving in an almost identical way. Each matter particle has an equivalent antiparticle, very similar but with opposite charge. When particles of matter and antimatter meet, they annihilate. Matter and antimatter would have been created in equal amounts at the Big Bang, yet today we live in a Universe apparently made entirely of matter.

Does nature have a preference for matter over antimatter? One of the main challenges of AMS will be to address this question by searching for single nuclei of antimatter that would signal the existence of large amounts of antimatter elsewhere in the Universe. To achieve this, AMS will track cosmic rays from outer space with unprecedented sensitivity.

“The cosmos is the ultimate laboratory,” said Nobel laureate and AMS Spokesperson Samuel Ting. “From its vantage point in space, AMS will explore such issues as Antimatter, Dark Matter and the origin of Cosmic Rays. However, its most exciting objective is to probe the unknown because whenever new levels of sensitivities are reached in exploring an unchartered realm, exciting and unimagined discoveries may be expected. “

In the same way that telescopes catch the light from the stars to better understand the Universe, AMS is a particle detector that will track incoming charged particles such as protons, electrons and atomic nuclei that constantly bombard our planet. By studying the flux of these cosmic rays with very high precision, AMS will have the sensitivity to identify a single antinucleus among a billion other particles.

“This is a very exciting moment for basic science,” said CERN Director General Rolf Heuer. “We expect interesting complementarities between AMS and the LHC. They look at similar questions from different angles, giving us parallel ways of addressing some of the Universe’s mysteries.”

AMS may also bring an important contribution to the search for the mysterious dark matter that would account for about 25% of the total mass-energy balance of the Universe. In particular, if dark matter is composed of supersymmetric particles, AMS could detect it indirectly by recording an anomaly in the flux of cosmic rays.

“Never in the history of science have we been so aware of our ignorance,” said AMS Deputy Spokesperson Roberto Battiston. “Today we know that we do not know anything about what makes up 95% of our Universe”.

AMS is a CERN recognized experiment and as such has benefited from CERN’s expertise in integrating large projects, from CERN’s vacuum and magnet groups and from test beam facilities for calibrating the detectors. In addition, the Payload Operation Centre (POC) of AMS will open in June 2011 at CERN, very near to the place where the AMS detector was assembled in clean room facilities. From the POC, physicists will be able to run the AMS detector as well as receive and analyse data arriving from the International Space Station.

AMS is the result of a large international collaboration with a major European participation. It is led by Nobel laureate Samuel Ting and involves about 600 researchers from CERN Member States (Denmark, Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, Switzerland) as well as from China, Korea, Mexico, Taiwan, and the United-States.

Follow the launch of AMS live:

The launch of AMS can be followed live via webcast at: http://webcast.cern.ch
Questions can be asked during the webcast by sending them to @cern on twitter

The live will also be broadcasted through EBU Eurovision services.
A VNR preview will be broadcasted on 28 April 2011, 10:00 - 10:15 GMT.
More information on http://www.eurovision.net/

Videos are available at: http://bit.ly/cernamsfootage
Videos are subject to the CDS conditions of use: http://bit.ly/CDSconditionsofuse

For updates about AMS, follow @astroparticle and @ams_02

Information about AMS can be found at www.ams02.org

Contacts:
CERN Press Office, press.office@cern.ch
+41 22 767 37 09
+41 22 767 34 32
+41 22 767 21 41

Leaders of AMS in Europe:

Denmark | Jes Madsen (Aarhus University) |
jesm@phys.au.dk

France | Sylvie Rosier-Lees (CNRS) | rosier@lapp.in2p3.fr |
Mobile: +33 6 33 40 24 48

Finland | Eino Valtonen (SRL) | eikka@utu.fi |
+358 2 333 5644

Germany | Stefan Schael (RWTH) | schael@physik.rwth-aachen.de |
Mobile: +49 173 721 721 2

Italy | Roberto Battiston (INFN) | roberto.battiston@pg.infn.it |
Mobile: +39 366 687 2527

The Netherlands | Johannes van Es (NLR) | jvanes@nlr.nl

Portugal | Fernando Barao (LIP) | barao@lip.pt |: +351 21 797 3880

Spain | Manuel Aguilar (CIEMAT) | manuel.aguilar@ciemat.es |
+34 636959701 | +34 91 2466589

Switzerland | Martin Pohl (UNIGE) | martin.pohl@cern.ch |
Mobile: +41 76 487 0405

Follow CERN at:
www.cern.ch
http://twitter.com/cern/
http://www.youtube.com/user/CERNTV
http://www.quantumdiaries.org/

| CERN Press Office
Further information:
http://www.cern.ch

Further reports about: AMS Big Bang CERN CERN’s Netherlands Nobel Prize Space Universe cosmic ray dark matter

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>