Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aluminum alloy overcomes obstacles on the path to making hydrogen a practical fuel source

01.11.2011
Hydrogen offers great promise as a renewable energy source. It's staggeringly plentiful (the most abundant element in the Universe) and environmentally friendly (used in a fuel cell, it gives off only water). Unfortunately, storing and transporting hydrogen for personal use is a significant engineering challenge.

Now, a team of researchers from the University of Texas at Dallas and Washington State University in Pullman, Wash., has made the counterintuitive discovery that aluminum, with a minor modification, is able to both break down and capture individual hydrogen atoms, potentially leading to a robust and affordable fuel storage system.

In nature, when two atoms of hydrogen meet they combine to form a very stable molecule (H2). Molecular hydrogen, however, has to be stored under great pressure and at very low temperatures, which is impractical if you want to power a vehicle or provide electricity for a home. A better solution would be to find a material that, at easily maintained temperatures and pressures, could efficiently store individual hydrogen atoms and release them on demand.

The first step in this process – hydrogen activation, breaking the chemical bonds that hold two hydrogen atoms together – is typically done by exposing molecular hydrogen to a catalyst. The best catalytic materials currently available are made of so-called "noble metals" (e.g. palladium and platinum). These elements efficiently enable hydrogen activation, but their scarcity makes them prohibitively expensive for widespread use.

In the quest to find an equally efficient yet less-expensive alternative, lead researcher Yves J. Chabal of the University of Texas at Dallas and Santanu Chaudhuri at Washington State University have identified a potential new hydrogen activation method that has the additional advantage of being an effective hydrogen-storage medium. Their proposed system relies on aluminum, a plentiful but inert metal that under normal conditions doesn't react with molecular hydrogen.

The key to unlocking aluminum's potential, the researchers surmised, is to impregnate its surface with some other metal that would facilitate the catalytic reaction. In this case, the researchers tested titanium, which is much more plentiful than noble metals and is used only sparingly in creating the titanium-doped aluminum surface.

Under very controlled temperatures and pressures, the researchers studied the aluminum surface, particularly in the vicinity of the titanium atoms, for telltale signs that catalytic reactions were taking place. The "smoking gun" was found in the spectroscopic signature of carbon monoxide (CO), which was added to the system to help identify areas of hydrogen activity. If atomic hydrogen were present, then the wavelength of light absorbed by the carbon monoxide bound to the catalytic metal center would become shorter, signaling that the catalyst was working.

"We've combined a novel infrared reflection absorption-based surface analysis method and first principles-based predictive modeling of catalytic efficiencies and spectral response, in which a carbon monoxide molecule is used as a probe to identify hydrogen activation on single-crystal aluminum surfaces containing catalytic dopants," says Chaudhuri.

Their studies revealed that in areas doped with titanium, the infrared signature of the CO shifted to shorter wavelengths even at very low temperatures. This "blue shift" was an indication that atomic hydrogen was being produced around some of the catalytic centers on an aluminum surface.

As part of a hydrogen storage system, an aluminum-supported catalyst has other advantages over more expensive metals. If technical advances like this can provide a pathway for aluminum to combine with hydrogen to form aluminum hydride (a stable solid with a composition ratio of a single aluminum atom to three hydrogen atoms) and store hydrogen as a high-density solid-state material, a critical step in developing a practical fuel system can be achieved.

The titanium further advances the process by helping the hydrogen bind to the aluminum to form aluminum hydride. If used as a fuel-storage device, the aluminum hydride could be made to release its store of hydrogen by simply raising its temperature.

"Although titanium may not be the best catalytic center for fully reversible aluminum hydride formation, the results prove for the first time that titanium-doped aluminum can activate hydrogen in ways that are comparable to expensive and less-abundant catalyst metals such as palladium and other near-surface alloys consisting of similar noble metals and their bimetallic analogs," Chaudhuri explains.

Irinder Chopra, the lead student in this project, will present this research at AVS' 58th International Symposium & Exhibition, held Oct. 30 – Nov. 4, 2011, in Nashville, Tenn. A paper based on this research – "Turning Aluminum into a noble-metal like catalyst for low-temperature molecular hydrogen activation" –was published online in the journal Nature Materials on September 25. Support for this research came from the Department of Energy – Office of Basic Energy Sciences.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation SS1-TuM-4, "Turning Aluminum into a Noble-metal like Catalyst for Low Temperature Molecular Hydrogen Activation," is at 9 a.m. on Tuesday, Nov. 1.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>