Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ALPHA stores antimatter atoms for over a quarter of an hour -- and still counting

06.06.2011
Berkeley Lab physicists join with their international colleagues in reaching a new frontier in antimatter science

The ALPHA Collaboration, an international team of scientists working at CERN in Geneva, Switzerland, has created and stored a total of 309 antihydrogen atoms, some for up to 1,000 seconds (almost 17 minutes), with an indication of much longer storage time as well.

ALPHA announced in November, 2010, that they had succeeded in storing antimatter atoms for the first time ever, having captured 38 atoms of antihydrogen and storing each for a sixth of a second. In the weeks following, ALPHA continued to collect anti-atoms and hold them for longer and longer times.

Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley, including Joel Fajans and Jonathan Wurtele of Berkeley Lab's Accelerator and Fusion Research Division (AFRD), both UC Berkeley physics professors, are members of the ALPHA Collaboration.

Says Fajans, "Perhaps the most important aspect of this result is that after just one second these antihydrogen atoms had surely already decayed to ground state. These were likely the first ground state anti-atoms ever made." Since almost all precision measurements require atoms in the ground state, ALPHA's achievement opens a path to new experiments with antimatter.

A principal component of ALPHA's atom trap is a superconducting octupole magnet proposed and prototyped in Berkeley Lab's AFRD. It takes ALPHA about 15 minutes to make and capture atoms of antihydrogen in their magnetic trap.

"So far, the only way we know whether we've caught an anti-atom is to turn off the magnet," says Fajans. "When the anti-atom hits the wall of the trap it annihilates, which tells us that we got one. In the beginning we were turning off our trap as soon as possible after each attempt to make anti-atoms, so as not to miss any."

Says Wurtele, "At first we needed to demonstrate that we could trap antihydrogen. Once we proved that, we started optimizing the system and made rapid progress, a real qualitative change."

Initially ALPHA caught only about one anti-atom in every 10 tries, but Fajans notes that at its best the ALPHA apparatus trapped one anti-atom with nearly every attempt.

Although the physical set-ups are different, ALPHA's ability to hold anti-atoms in a magnetic trap for 1,000 seconds, and presumably longer, compares well to the length of time ordinary atoms can be magnetically confined.

"A thousand seconds is more than enough time to perform measurements on a confined anti-atom," says Fajans. "For instance, it's enough time for the anti-atoms to interact with laser beams or microwaves." He jokes that, at CERN, "it's even enough time to go for coffee."

The ALPHA Collaboration not only made and stored the long-lived antihydrogen atoms, it was able to measure their energy distribution.

"It may not sound exciting, but it's the first experiment done on trapped antihydrogen atoms," Wurtele says. "This summer we're planning more experiments, with microwaves. Hopefully we will measure microwave-induced changes of the atomic state of the anti-atoms." With these and other experiments the ALPHA Collaboration aims to determine the properties of antihydrogen and measure matter-antimatter asymmetry with precision.

A program of upgrades is being planned that will allow experiments not possible with the current ALPHA apparatus. At present the experimenters don't have laser access to the trap. Lasers are essential for performing spectroscopy and for "cooling" the antihydrogen atoms (reducing their energy and slowing them down) to perform other experiments.

Fajans says, "We hope to have laser access by 2012. We're clearly ready to move to the next level."

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Additional information

"Confinement of antihydrogen for 1000 seconds," by the ALPHA Collaboration: G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, E. Butler, C. L. Cesar, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, R. S. Hayano, M. E. Hayden, A. J. Humphries, R. Hydomako, S. Jonsell, S. Kemp, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, E. Sarid, D. M. Silveira, C. So, J. W. Storey, R. I. Thompson, D. P. van der Werf, J. S. Wurtele, Y. Yamazaki, appears in Nature Physics and is available online at http://www.nature.com/nphys/index.html.

Details of the ALPHA method of creating and trapping antihydrogen atoms may be found in "Antimatter Atoms Successfully Stored for the First Time," the 17 November 2010 Berkeley Lab news release, at http://newscenter.lbl.gov/news-releases/2010/11/17/antimatter-atoms/.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

Further reports about: AFRD CERN Collaboration Laboratory hydrogen atom laser beam specimen processing

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>