Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ALMA Pinpoints Pluto to Help Guide NASA’s New Horizons Spacecraft

07.08.2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) are making high-precision measurements of Pluto's location and orbit around the Sun to help NASA’s New Horizons spacecraft accurately home in on its target when it nears Pluto and its five known moons in July 2015.

Though observed for decades with ever-larger optical telescopes on Earth and in space, astronomers are still working out Pluto's exact position and path around our Solar System. This lingering uncertainty is due to Pluto's extreme distance from the Sun (approximately 40 times farther out than the Earth) and the fact that we have been studying it for only about one-third of its orbit. Pluto was discovered in 1930 and takes 248 years to complete one revolution around the Sun.


B. Saxton (NRAO/AUI/NSF)

The cold surface of Pluto and its largest moon Charon as seen with ALMA on July 15, 2014.

“With these limited observational data, our knowledge of Pluto’s position could be wrong by several thousand kilometers, which compromises our ability to calculate efficient targeting maneuvers for the New Horizons spacecraft,” said New Horizons Project Scientist Hal Weaver, from the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

The New Horizons team made use of the ALMA positioning data, together with newly analyzed visible light measurements stretching back nearly to Pluto's discovery, to determine how to perform the first such scheduled course correction for targeting, known as a Trajectory Correction Maneuver (TCM), in July. This maneuver helped ensure that New Horizons uses the minimum fuel to reach Pluto, saving as much as possible for a potential extended mission to explore Kuiper Belt objects after the Pluto system flyby is complete.

To prepare for this first TCM, astronomers needed to pinpoint Pluto's position using the most distant and most stable reference points possible. Finding such a reference point to accurately calculate trajectories of such small objects at such vast distances is incredibly challenging. Normally, stars at great distances are used by optical telescopes for astrometry (the positioning of things on the sky) since they change position only slightly over many years. For New Horizons, however, even more precise measurements were necessary to ensure its encounter with Pluto would be as on-target as possible.

The most distant and most apparently stable objects in the Universe are quasars, galaxies more than 10 billion light-years away. Though quasars appear very dim to optical telescopes, they are incredibly bright at radio wavelengths, particularly the millimeter wavelengths that ALMA can see.

“The ALMA astrometry used a bright quasar named J1911-2006 with the goal to cut in half the uncertainty of Pluto's position,” said Ed Fomalont, an astronomer with the National Radio Astronomy Observatory in Charlottesville, Virginia, and currently assigned to ALMA’s Operations Support Facility in Chile.

ALMA was able to study Pluto and its largest moon Charon by picking up the radio emission from their cold surfaces, which are about 43 degrees Kelvin (-230 degrees Celsius).

The team first observed these two icy worlds in November 2013, and then three more times in 2014 -- once in April and twice in July. Additional observations are scheduled for October 2014.

"By taking multiple observations at different dates, we allow Earth to move along its orbit, offering different vantage points in relation to the Sun," said Fomalont. "Astronomers can then better determine Pluto's distance and orbit." This astronomical technique is called measuring Pluto's parallax.

"We are very excited about the state-of-the-art capabilities that ALMA brings to bear to help us better target our historic exploration of the Pluto system," said New Horizons Principal Investigator Alan Stern of the Southwest Research Institute in Boulder, Colorado. "We thank the entire ALMA team for their support and for the beautiful data they are gathering for New Horizons."

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

New Horizons is the first mission to the Pluto system and the Kuiper Belt of rocky, icy objects beyond. The Johns Hopkins University Applied Physics Laboratory (APL) manages the mission for NASA’s Science Mission Directorate; Alan Stern, of the Southwest Research Institute (SwRI), is the principal investigator and leads the mission. SwRI leads the science team, payload operations and encounter science planning; APL designed, built and operates the New Horizons spacecraft. New Horizons is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Ala. For more information, visit http://pluto.jhuapl.edu.

Contact Information

Charles Blue
cblue@nrao.edu
Phone: 434-296-0314
Mobile: 202-236-6324

Charles Blue | newswise

Further reports about: Astronomy Earth Observatory Pluto Sun construction telescopes

More articles from Physics and Astronomy:

nachricht Australian technology installed on world’s largest single-dish radio telescope
26.09.2016 | International Centre for Radio Astronomy Research (ICRAR)

nachricht How to merge two black holes in a simple way
26.09.2016 | Plataforma SINC

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>