Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All-You-Can-Eat at the End of the Universe

12.08.2014

A new model shows how early black holes could have grown to over a billion solar masses

At the ends of the Universe there are black holes with masses equaling billions of our sun. These giant bodies – quasars – feed on interstellar gas, swallowing large quantities of it non-stop.


A small black hole gains mass: Dense cold gas (green) flows toward the center of a stellar cluster (red cross in blue circle) with stars (yellow); the erratic path of the black hole through the gas (black line) is randomized by the surrounding stars

Thus they reveal their existence: The light that is emitted by the gas as it is sucked in and crushed by the black hole's gravity travels for eons across the Universe until it reaches our telescopes.

Looking at the edges of the Universe is therefore looking into the past. These far-off, ancient quasars appear to us in their “baby photos” taken less than a billion years after the Big Bang: monstrous infants in a young Universe.

Normally, a black hole forms when a massive star, weighing tens of solar masses, explodes after its nuclear fuel is spent. Without the nuclear furnace at its core pushing against gravity, the star collapses: Much of the material is flung outwards in a great supernova blast, while the rest falls inward, forming a black hole of only about 10 solar masses.

Since these ancient quasars were first discovered, scientists have wondered what process could lead a small black hole to gorge and fatten to such an extent, so soon after the Big Bang.

In fact, several processes tend to limit how fast a black hole can grow. For example, the gas normally does not fall directly into the black hole, but gets sidetracked into a slowly spiraling flow, trickling in drop by drop. When the gas is finally swallowed by the black hole, the light it emits pushes out against the gas. That light counterbalances gravity, and it slows the flow that feeds the black hole.

So how, indeed, did these ancient quasars grow? Prof. Tal Alexander, Head of the Particle Physics and Astrophysics Department, proposes a solution in a paper written together with Prof. Priyamvada Natarajan of Yale University, which recently appeared in Science.

Their model begins with the formation of a small black hole in the very early Universe. At that time, cosmologists believe, gas streams were cold, dense, and contained much larger amounts of material than the thin gas streams we see in today’s cosmos. The hungry, newborn black hole moved around, changing direction all the time as it was knocked about by other baby stars in its vicinity.

By quickly zigzagging, the black hole continually swept up more and more of the gas into its orbit, pulling the gas directly into it so fast, the gas could not settle into a slow, spiraling motion. The bigger the black hole got, the faster it ate; this growth rate, explains Alexander, rises faster than exponentially.

After around 10 million years – a blink of an eye in cosmic time – the black hole would have filled out to around 10,000 solar masses. From then, the colossal growth rate would have slowed to a somewhat more leisurely pace, but the black hole’s future path would already be set – leading it to eventually weigh in at a billion solar masses or more.

 

Prof. Tal Alexander’s research is supported by the European Research Council.

Yivsam Azgad | Eurek Alert!
Further information:
http://wis-wander.weizmann.ac.il/all-you-can-eat-at-the-end-of-the-universe?press-room-rb#.U-pXYGEcTct

Further reports about: All-You-Can-Eat Big Bang Physics Universe Weizmann black hole gravity quasars solar masses

More articles from Physics and Astronomy:

nachricht Scientists explain how the giant magnetoelectric effect occurs in bismuth ferrite
23.05.2016 | Moscow Institute of Physics and Technology

nachricht Physicists create first metamaterial with rewritable magnetic ordering
23.05.2016 | University of Notre Dame

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

Im Focus: Laser pulses: conductors for protons

Using ultrashort laser pulses an international team at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich has managed to manipulate the positions of atoms in hydrocarbon molecules.

Light can conduct the play of atoms and molecules in the microcosm. Humans manage to interfere with this play. Researchers from the Laboratory of Attosecond...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

Permafrost Conference in Potsdam, Germany

17.05.2016 | Event News

 
Latest News

Autonomous driving: emergence of new billion euro market

23.05.2016 | Information Technology

NEST: building of the future is up and running

23.05.2016 | Architecture and Construction

Researchers find that Earth may be home to 1 trillion species

23.05.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>