Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All-You-Can-Eat at the End of the Universe

12.08.2014

A new model shows how early black holes could have grown to over a billion solar masses

At the ends of the Universe there are black holes with masses equaling billions of our sun. These giant bodies – quasars – feed on interstellar gas, swallowing large quantities of it non-stop.


A small black hole gains mass: Dense cold gas (green) flows toward the center of a stellar cluster (red cross in blue circle) with stars (yellow); the erratic path of the black hole through the gas (black line) is randomized by the surrounding stars

Thus they reveal their existence: The light that is emitted by the gas as it is sucked in and crushed by the black hole's gravity travels for eons across the Universe until it reaches our telescopes.

Looking at the edges of the Universe is therefore looking into the past. These far-off, ancient quasars appear to us in their “baby photos” taken less than a billion years after the Big Bang: monstrous infants in a young Universe.

Normally, a black hole forms when a massive star, weighing tens of solar masses, explodes after its nuclear fuel is spent. Without the nuclear furnace at its core pushing against gravity, the star collapses: Much of the material is flung outwards in a great supernova blast, while the rest falls inward, forming a black hole of only about 10 solar masses.

Since these ancient quasars were first discovered, scientists have wondered what process could lead a small black hole to gorge and fatten to such an extent, so soon after the Big Bang.

In fact, several processes tend to limit how fast a black hole can grow. For example, the gas normally does not fall directly into the black hole, but gets sidetracked into a slowly spiraling flow, trickling in drop by drop. When the gas is finally swallowed by the black hole, the light it emits pushes out against the gas. That light counterbalances gravity, and it slows the flow that feeds the black hole.

So how, indeed, did these ancient quasars grow? Prof. Tal Alexander, Head of the Particle Physics and Astrophysics Department, proposes a solution in a paper written together with Prof. Priyamvada Natarajan of Yale University, which recently appeared in Science.

Their model begins with the formation of a small black hole in the very early Universe. At that time, cosmologists believe, gas streams were cold, dense, and contained much larger amounts of material than the thin gas streams we see in today’s cosmos. The hungry, newborn black hole moved around, changing direction all the time as it was knocked about by other baby stars in its vicinity.

By quickly zigzagging, the black hole continually swept up more and more of the gas into its orbit, pulling the gas directly into it so fast, the gas could not settle into a slow, spiraling motion. The bigger the black hole got, the faster it ate; this growth rate, explains Alexander, rises faster than exponentially.

After around 10 million years – a blink of an eye in cosmic time – the black hole would have filled out to around 10,000 solar masses. From then, the colossal growth rate would have slowed to a somewhat more leisurely pace, but the black hole’s future path would already be set – leading it to eventually weigh in at a billion solar masses or more.

 

Prof. Tal Alexander’s research is supported by the European Research Council.

Yivsam Azgad | Eurek Alert!
Further information:
http://wis-wander.weizmann.ac.il/all-you-can-eat-at-the-end-of-the-universe?press-room-rb#.U-pXYGEcTct

Further reports about: All-You-Can-Eat Big Bang Physics Universe Weizmann black hole gravity quasars solar masses

More articles from Physics and Astronomy:

nachricht A drop of water as a model for the interplay of adhesion and stiction
30.06.2016 | Universität Zürich

nachricht Optical lenses, hardly larger than a human hair
29.06.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>