Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New algorithm to improve video game quality

Research presented in a paper by Morgan McGuire, assistant professor of computer science at Williams College, and co-author Dr. David Luebke of NVIDIA, introduces a new algorithm to improve computer graphics for video games.

McGuire and Luebke have developed a new method for computerizing lighting and light sources that will allow video game graphics to approach film quality.

Their paper "Hardware-Accelerated Global Illumination by Image Space Photon Mapping" won a Best Paper award at the 2009 Conference on High Performance Graphics.

Because video games must compute images more quickly than movies, video game developers have struggled with maximizing graphic quality.

Producing light effects involves essentially pushing light into the 3D world and pulling it back to the pixels of the final image. The method created by McGuire and Luebke reverses the process so that light is pulled onto the world and pushed into the image, which is a faster process.

As video games continue to increase the degree of interactivity, graphics processors are expected to become 500 times faster than they are now. McGuire and Luebke's algorithm is well suited to the quickened processing speed, and is expected to be featured in video games within the next two years.

McGuire is author of "Creating Games: Mechanics, Content, and Technology" and is co-chair of the ACM SIGGRAPH Symposium on Non-Photorealistic Animation and Rendering, and previously chaired the ACM Symposium on Interactive 3D Graphics and Games.

He has worked on and consulted for commercial video games such as "Marvel Ultimate Alliance" (2009), "Titan Quest" (2006), and "ROBLOX" (2005).

McGuire received his B.S. from the Massachusetts Institute of Technology in 2000 and his Ph.D. from Brown University in 2006. At Williams since 2006, he teaches courses on computer graphics and game design.

Founded in 1793, Williams College is the second oldest institution of higher learning in Massachusetts. The college's 2,000 students are taught by a faculty noted for the quality of their teaching and research, and the achievement of academic goals includes active participation of students with faculty in their research. Students' educational experience is enriched by the residential campus environment in Williamstown, Mass., which provides a host of opportunities for interaction with one another and with faculty beyond the classroom. Admission decisions are made regardless of a student's financial ability, and the college provides grants and other assistance to meet the demonstrated needs of all who are admitted.

To visit the college on the Internet: Williams College can also be found on Facebook: and Twitter:

Jo Procter | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>