Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air flows in mechanical device reveal secrets of speech pathology

22.11.2010
Discovery by George Washington University researchers may improve treatments

From a baby's first blurted "bowl!'" for the word "ball" to the whispered goodbye of a beloved elder, the capacity for complex vocalizations is one of humankind's most remarkable attributes -- and perhaps one we take for granted most of our lives.

Not so for people who are afflicted with paralysis to their vocal folds and who suffer the social stigma of affected speech. Nor so for engineering professor Michael Plesniak and post-doctoral researcher Byron Erath at the George Washington University (GWU) Biofluid Dynamics Laboratory In Washington, D.C., and their colleague professor Sean Peterson at the University of Waterloo. To them, the ability to vocalize is such a prized ability that they have built a mechanical model of human vocal folds.

Today at the American Physical Society Division of Fluid Dynamics (DFD) meeting in Long Beach, CA, the researchers are reporting their discovery of how asymmetrical airflow impacts normal and diseased vocal fold motion -- observations that may lead to new devices to help those who cannot take for granted their ability to vocalize.

"Potential application of this finding includes assisting otolaryngologists to optimize surgical procedures to correct vocal fold paralysis with an implant that changes the position of the damaged vocal fold," Plesniak says.

Vocal folds, commonly known as vocal cords, are the vibrating structures of the phonatory process that stretch across the larynx, and are driven by air expelled from the lungs. Variability in the physics of sound production from the vocal folds can mark the difference between communication that connects people and enriches their lives and speech so impaired it isolates and estranges.

In the GWU team's most recent investigation, they found that asymmetric flow develops when there is an adverse pressure gradient. Under these conditions, the glottal jet separates from one vocal fold and attaches to the opposing one, disrupting the pressure forces that drive vocal fold motion. This change can have devastating impacts on speech.

"In the past, many investigators have assumed air flow is symmetrical over the vocal folds," explains Erath. "We've discovered that this is not always the case."

While most people's vocal folds tolerate the asymmetry very well, the degree of asymmetry becomes especially important in speech pathologies where tissue stiffness is affected by diseases such as unilateral vocal fold paralysis. In these cases, the asymmetric flow interacts with the damaged vocal fold, causing chaotic irregular vibrations.

Data from the GWU team suggests that devising an implant material with tissue properties that mimic those of the voice apparatus is key to restoring the good vibrations that are the foundation of intelligible speech.

The presentation "The impact of asymmetric flows on pathological speech is at 8:13 a.m. on Sunday, November 21, 2010 in the Long Beach Convention Center Room: 202A. ABSTRACT: http://meetings.aps.org/Meeting/DFD10/Event/132273

MORE MEETING INFORMATION

The 63rd Annual DFD Meeting is hosted this year by the University of Southern California, California State University Long Beach, California Institute of Technology, and the University of California, Los Angeles.

It will be held at the Long Beach Convention Center, located in downtown Long Beach, California. All meeting information, including directions to the Convention Center is at: http://www.dfd2010.caltech.edu/

USEFUL LINKS

Main meeting Web site:
http://www.dfd2010.caltech.edu/
Search Abstracts:
http://meetings.aps.org/Meeting/DFD10/SearchAbstract
Directions to Convention Center:
http://www.longbeachcc.com/
PRESS REGISTRATION
Credentialed full-time journalist and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Jason Bardi (jbardi@aip.org, 301-209-3091).

ONSITE WORKSPACE FOR REPORTERS

A reserved workspace with wireless internet connections will be available for use by reporters in the Promenade Ballroom of the Long Beach Convention Center on Sunday, Nov. 21 and Monday, Nov. 22 from 8:00 a.m. to 5:00 p.m. and on Tuesday, Nov. 23 from 8:00 a.m. to noon. Press announcements and other news will be available in the Virtual Press Room (see below).

VIRTUAL PRESS ROOM

The APS Division of Fluid Dynamics Virtual Press Room will be launched in mid-November and will contain dozens of story tips on some of the most interesting results at the meeting as well as stunning graphics and videos. The Virtual Press Room will serve as starting points for journalists who are interested in covering the meeting but cannot attend in person. See: http://www.aps.org/units/dfd/pressroom/index.cfm

GALLERY OF FLUID MOTION

Every year, the APS Division of Fluid Dynamics hosts posters and videos that show stunning images and graphics from either computational or experimental studies of flow phenomena. The outstanding entries, selected by a panel of referees for artistic content, originality and ability to convey information, will be honored during the meeting, placed on display at the Annual APS Meeting in March of 2011, and will appear in the annual Gallery of Fluid Motion article in the September 2011 issue of the American Institute of Physics' journal, Physics of Fluids.

This year, selected entries from the 28th Annual Gallery of Fluid Motion will be hosted as part of the Fluid Dynamics Virtual Press Room. In mid-November, when the Virtual Press Room is launched, another announcement will be sent out.

ABOUT THE APS DIVISION OF FLUID DYNAMICS

The Division of Fluid Dynamics of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. See: http://www.aps.org/units/dfd/

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>