Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advancing secure communications: A better single-photon emitter for quantum cryptography

10.04.2013
In a development that could make the advanced form of secure communications known as quantum cryptography more practical, University of Michigan researchers have demonstrated a simpler, more efficient single-photon emitter that can be made using traditional semiconductor processing techniques.

Single-photon emitters release one particle of light, or photon, at a time, as opposed to devices like lasers that release a stream of them. Single-photon emitters are essential for quantum cryptography, which keeps secrets safe by taking advantage of the so-called observer effect: The very act of an eavesdropper listening in jumbles the message. This is because in the quantum realm, observing a system always changes it.

For quantum cryptography to work, it's necessary to encode the message—which could be a bank password or a piece of military intelligence, for example—just one photon at a time. That way, the sender and the recipient will know whether anyone has tampered with the message.

While the U-M researchers didn't make the first single-photon emitter, they say their new device improves upon the current technology and is much easier to make.

"This thing is very, very simple. It is all based on silicon," said Pallab Bhattacharya, the Charles M. Vest Distinguished University Professor of Electrical Engineering and Computer Science, and the James R. Mellor Professor of Engineering.

Bhattacharya, who leads this project, is a co-author of a paper on the work published in Nature Communications on April 9.

Bhattacharya's emitter is a single nanowire made of gallium nitride with a very small region of indium gallium nitride that behaves as a quantum dot. A quantum dot is a nanostructure that can generate a bit of information. In the binary code of conventional computers, a bit is a 0 or a 1. A quantum bit can be either or both at the same time.

The semiconducting materials the new emitter is made of are commonly used in LEDs and solar cells. The researchers grew the nanowires on a wafer of silicon. Because their technique is silicon-based, the infrastructure to manufacture the emitters on a larger scale already exists. Silicon is the basis of modern electronics.

"This is a big step in that it produces the pathway to realizing a practical electrically injected single-photon emitter," Bhattacharya said.

Key enablers of the new technology are size and compactness.

"By making the diameter of the nanowire very small and by altering the composition over a very small section of it, a quantum dot is realized," Bhattacharya said. "The quantum dot emits single-photons upon electrical excitation."

The U-M emitter is fueled by electricity, rather than light—another aspect that makes it more practical. And each photon it emits possesses the same degree of linear polarization. Polarization refers to the orientation of the electric field of a beam of light. Most other single-photon emitters release light particles with a random polarization.

"So half might have one polarization and the other half might have the other," Bhattacharya said. "So in cryptic message, if you want to code them, you would only be able to use 50 percent of the photons. With our device, you could use almost all of them."

This device operates at cold temperatures, but the researchers are working on one that operates closer to room temperature.

The paper is titled "Electrically-driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire." The first author is Saniya Deshpande, a graduate student in electrical engineering and computer science. The work is supported by the National Science Foundation. The device was fabricated at the U-M Lurie Nanofabrication Facility.

Pallab Bhattacharya:
https://www.eecs.umich.edu/eecs/etc/fac/facsearchform.cgi?pkb+

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht High-Power Laser Spinoff Proves Versatility Is Strength
20.04.2015 | University of Wisconsin-Madison

nachricht STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC
20.04.2015 | Department of Energy, Office of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

High-Power Laser Spinoff Proves Versatility Is Strength

20.04.2015 | Physics and Astronomy

New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

20.04.2015 | Architecture and Construction

STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC

20.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>