Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advancing the nuclear enterprise through better computing

19.05.2010
Scientists at the Nuclear Science and Technology Division of the U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) are merging decades of nuclear energy and safety expertise with high-performance computing to effectively address a range of nuclear energy- and security-related challenges

John Wagner, Technical Integration Manager for Nuclear Modeling within ORNL's Nuclear Science and Technology Division (NSTD), says one of the goals of his organization is to integrate existing nuclear energy and nuclear national security modeling and simulation capabilities and associated expertise with high-performance computing to solve problems that were previously unthinkable or impractical in terms of the computing power required to address them.

In the area of nuclear energy, the Nuclear Modeling staff specializes in developing and applying computational methods and software for simulating radiation in order to support the design and safety of nuclear facilities, improve reactor core designs and nuclear fuel performance, and ensure the safety of nuclear materials, such as spent nuclear fuel. The Nuclear Modeling staff is internationally known for developing and maintaining SCALE, a comprehensive nuclear analysis software package originally developed for the Nuclear Regulatory Commission with signature capabilities in the criticality safety, reactor physics and radiation shielding areas. In recent years, ORNL has placed an emphasis on transforming its current capabilities through high-performance computing, as well as the development of new and novel computational methods.

"Traditionally, reactor models for radiation dose assessments have considered just the reactor core, or a small part of the core," Wagner says. "However, we're now simulating entire nuclear facilities, such as a nuclear power reactor facility with its auxiliary buildings and the ITER fusion reactor, with much greater accuracy than any other organization that we're aware of." More accurate models enable nuclear plants to be designed with more accurate safety margins and shielding requirements, which helps to improve safety and reduce costs. The technology that makes this sort of leading-edge simulation possible is a combination of ORNL's Jaguar, the world's fastest supercomputer; advanced transport methods; and a next-generation software package called Denovo.

"At first we tried adapting older software to the task, but we abandoned that idea pretty quickly," says NSTD scientist and Denovo creator Tom Evans. As a result of that decision, Evans started from scratch to develop new software that is far more efficient at creating computer models on state-of-the-art supercomputers. Evans observes that, in some ways, Denovo is a synthesis of the last decade of research in the field. "Software for modeling radiation transport has been around for a long time," he says, "but it hadn't been adapted to build on developments that have revolutionized computational science. There's no special transformational technology in this software; but it's designed specifically to take advantage of the massive computational and memory capabilities of the world's fastest computers."

Denovo, which appropriately enough means "from new" or "from scratch" was recently awarded 8 million processor hours on the Jaguar supercomputer by the DOE Office of Science's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program to develop a uniquely detailed simulation of the power distribution inside a nuclear reactor core. This simulation will be used to help to design the next generation of reactors by expediting experiments that can take years to conduct and to help to ensure that reactor designs are as efficient as possible.

Wagner notes that Denovo provides a fundamental capability for radiation transport modeling that continues to be expanded and applied to numerous ORNL projects. However, he is also quick to point out that these computer simulations will not completely eliminate the need for experimental or measurement data to confirm or "validate" the software. Instead, the new generation of nuclear modeling will increase confidence in the results using a more limited set of physical data. "We want to develop a predictive capability that has increased accuracy, reliability and flexibility," he says, "that can be used to improve our knowledge and understanding and increase our confidence in the decisions we make about design, safety, and performance of nuclear facilities. That's the goal."

ORNL is managed by UT-Battelle for the U.S. Department of Energy Office's of Science.

Jim Pearce | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>