Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Advance made toward communication, computing at 'terahertz' speeds

Physicists in the United States and Germany have discovered a way to use a gallium arsenide nanodevice as a signal processor at “terahertz” speeds, the first time it’s been used for this purpose and an important step forward in the new world of optical communication and computing.

Existing communications and computer architecture are increasingly being limited by the pedestrian speed of electrons moving through wires, and the future of high-speed communication and computing is in optics, experts say. The Holy Grail of results would be “wireless interconnecting,” which operates at speeds 100 to 1,000 times faster than current technology.

The new discovery, made by researchers at Oregon State University, the University of Iowa and Philipps University in Germany, has identified a way in which nanoscale devices based on gallium arsenide can respond to strong terahertz pulses for an extremely short period, controlling the electrical signal in a semiconductor. The research builds on previous findings for which OSU holds an issued patent.

“Optical communication uses the extraordinary speed of light as the signal, but right now it’s still controlled and limited by electrical signaling at the end,” said Yun-shik Lee, an associate professor in the OSU Department of Physics. “Electrons and wires are too slow, they’re a bottleneck. The future is in optical switching, in which wires are replaced by emitters and detectors that can function at terahertz speeds.”

The gallium arsenide devices used in this research can do that, the scientists discovered.

“This could be very important,” Lee said. “We were able to manipulate and observe the quantum system, basically create a strong response and the first building block of optical signal processing.”

The first applications of this type of technology, Lee said, would probably be in optical communications of almost any type – video, audio or others. The ultimate application could be quantum computing, in which computers would be orders of magnitude faster than they are now, working with a different physical and logic basis, not even using conventional transistors. Among other uses, their extraordinary speeds would make them extremely valuable for secure codes and communications.

The current use of gallium arsenide was done at the very low temperatures of liquid helium, which would not be practical for broader use. Other materials will need to be identified that can accomplish similar tasks at room temperature, the researchers said.

This research was just published in Solid State Electronics, a professional journal. It was supported by the National Science Foundation and the Oregon Nanoscience and Microtechnologies Institute.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Yun-Shik Lee | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>