Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adaptive optics at Europe's flagship telescope looks back on a decade of successful observations

25.11.2011
Ten years ago today, NACO became operational: the first adaptive optics system of ESO's Very Large Telescope (VLT). Adaptive Optics allows astronomers to remove the stars' twinkling – disturbances due to the Earth's atmosphere –, allowing for extremely sharp images of celestial objects.

NACO looks back on a decade of scientific results, including the first direct image of an exoplanet and insight into the surroundings of our home galaxy's central black hole.


This near-infrared image of the active galaxy NGC 1097, obtained with NACO in 2005, discloses in unprecedented detail a complex network of filaments linking the outer regions with the galaxy's center. These observations provide astronomers with new insights on how super-massive black holes lurking inside galaxies get fed. Credit: ESO, A. Prieto (MPIA, IAC)

For non-astronomers, the twinkling of the stars can be quite romantic. For astronomers, it is the outward sign of a fundamental problem: As light passes through turbulent areas of the Earth's atmosphere, it is deflected in uneven and ever-changing ways. What should be a sharp image of, say, a star in a telescope instead becomes a diffuse disk as the star's image dances to and fro, or splits into several partial images.

That is why, before adaptive optics, astronomers were forced to use space telescopes or else to wait for exceptionally good atmospheric conditions – which happen only a few times, if at all, in any given year – to obtain sharp images of celestial objects.

At least for images in the near-infrared, at slightly longer wavelengths that those of visible light, astronomers can also address the problem directly, using Adaptive Optics (AO): The ever-changing image is analyzed by a fast computer which, in real time, controls a deformable mirror. As the image dances and splits, the mirror twists warps and to compensate, restoring sharpness.

The NACO instrument was the first Adaptive Optics system at the VLT, the flagship facility for European ground-based astronomy. Installed on one of the VLT's four 8,2 metre telescopes in 2001, it commenced scientific operations ("first light" in astronomical parlance) on November 25, 2001.

NACO was not the first AO instrument on an 8-10 metre class telescope, but it is arguably one of the most successful ones. With its help, the VLT immediately achieved a resolution surpassing that of the Hubble Space Telescope – at least at infrared wavelengths, where NACO operates. Scientific results from NACO run the gamut from solar system research to the most distant galaxies:

The instrument revealed the infrared glow of individual volcanoes on Jupiter's moon Io, and obtained some of the first detailed surface and weather maps of Saturn's moon Titan, the largest moon in the Solar System. It also excelled at detecting and examining planets outside the solar system (exoplanets): A faint speck of light called 2M1207b was the first planet-sized object ever imaged in orbit around an object other than the Sun (in this case, a so-called brown dwarf – an object that is not quite a star, but larger than a planet).

In another first, NACO performed the first spectral analysis of a directly imaged exoplanet in orbit around a nearby star. This allowed astronomers to probe the atmosphere of the exoplanet HR 8799c for the presence of methane and carbon monoxide.

NACO's uniquely sharp infrared view also pierced the dust veil hiding the centre of the Milky Way. By tracing the orbit of a star around the Galactic center, NACO provided the strongest evidence yet for the presence of a central black hole in the centre of our home galaxy, with the mass of several million Suns.

When it came to young star clusters like the Arches cluster or RCW 38, NACO proved its worth by imaging separately hundreds of densely packed stars in the clusters' central regions. This provided astronomers with data to study the early phases of stellar evolution over the entire range of stellar masses, from stars with less than tenths of the mass of our Sun to stars with more than 100 solar masses.

NACO is a first generation VLT instrument, developed in a joint effort between French and German research institutes and ESO. Thanks to continuous upgrades over the past decade, it remains one of the preeminent Adaptive Optics instruments worldwide, enabling European astronomers to stay at the forefront of astronomical research. Several additional Adaptive Optics instruments have entered service at the VLT over the past decade. A number of new instruments are currently under development, and Adaptive Optics will be an integral part of the next generation of telescopes, including the 40 metre class European Extremely Large Telescope.

Contact information

Rainer Lenzen (principal investigator, CONICA)
Max Planck Institute for Astronomy, Heidelberg
Phone: (+49|0) 6221 – 528 228
Email: lenzen@mpia.de
Wolfgang Brandner
Max Planck Institute for Astronomy, Heidelberg
Phone: (+49|0) 6221 – 528 289
Email: brandner@mpia.de
Markus Pössel (public relations)
Max Planck Institute for Astronomy, Heidelberg
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de
Background information
NACO is a first generation VLT instrument, developed in a joint effort between French and German research institutes and ESO. NACO is short for NAOS-CONICA, which acronyms in turn stand for the instrument's two sub-systems:

The Nasmyth Adaptive Optics System (NAOS) has been developed, with the support of Institut National des Sciences de lUnivers/Centre National de la Recherche Scientifique (INSU/CNRS) by a French Consortium in collaboration with ESO. The French consortium consists of Office National d'Etudes et de Recherches Aèrospatiales (ONERA), Institut de Planetologie et d'Astrophysique de Grenoble (IPAG, formerly called Laboratoire d'Astrophysique de Grenoble) and Observatoire de Paris: Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA, formerly called DESPA) and DASGAL (which does not exist anymore). The Project Manager is Gérard Rousset (ONERA), the Instrument Scientist responsible is François Lacombe (Observatoire de Paris) and the Project Scientist is Anne-Marie Lagrange (Institut de Planetologie et d'Astrophysique de Grenoble, OSUG, Université Joseph Fourier/CNRS).

The CONICA Near-Infrared CAmera has been developed by a German Consortium, with an extensive ESO collaboration. The Consortium consists of Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck-Institut für Extraterrestrische Physik (MPE) (Garching). The Principal Investigator (PI) is Rainer Lenzen (MPIA), with Reiner Hofmann (MPE) as Co-Investigator.

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2e.php?Aktuelles/PR/2011/PR111125/PR_111125_en.html

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>