Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active particles may enhance phase separation

12.06.2014

Model system used to illustrate phase transition of a mixture of active and passive particles


Snapshots from a molecular dynamics simulation with 547 colloids and 1,781 polymers in an elongated simulation box. The upper image shows an equilibrium configuration of the passive system which did not phase-separate. The lower image is the corresponding active system in its steady state which is clearly phase-separated. In both pictures, colloids are shown in yellow and polymers in black. (ill./©: Peter Virnau, JGU)

Systems containing self-propelling particles, such as bacteria or artificial colloidal particles, are always out of equilibrium but may show interesting transitions between different states, reminiscent of phase transitions in Systems containing self-propelling particles, such as bacteria or artificial colloidal particles, are always out of equilibrium but may show interesting transitions between different states, reminiscent of phase transitions in equilibrium.

However, application of analytical and computational methodologies from equilibrium statistical mechanics is questionable to study properties of such active systems. An international team of researchers – including Dr. Peter Virnau and Professor Kurt Binder of Johannes Gutenberg University Mainz (JGU), Benjamin Trefz of the JGU Graduate School of Excellence "Materials Science in Mainz" (MAINZ), and scientists from India and the U.S. – has studied the phase separation of a mixture of active and passive particles via molecular dynamics simulations and integral equation theoretical calculations. The distinctive feature of the model used is that the "activity" of the particles is tunable, containing passive particles as a limiting case for which already phase separation occurs.

"Our research results demonstrate that the introduction of activity may not only hamper phase separation as shown previously, but can enhance it as well, based on the coordination among the active particles," explained Dr. Peter Virnau of the Institute of Physics at Mainz University. Moreover, the researchers provided an approximate mapping of the phase behavior and structural properties of this nonequilibrium problem onto an equilibrium problem. A general validity of this mapping is subject to further careful testing. The confirmation of such validity would be an important step forward in understanding properties of active matter.

Publication:
Subir K. Das et al.
Phase Behavior of Active Swimmers in Depletants: Molecular Dynamics and Integral Equation Theory
Physical Review Letters, 15 May 2014
DOI: 10.1103/PhysRevLett.112.198301
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.198301

Further information:
Dr. Peter Virnau
Condensed Matter Theory Group (KOMET)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20493
fax +49 6131 39-20496
e-mail: virnau@uni-mainz.de
http://www.komet331.physik.uni-mainz.de/virnau.php

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.198301 - Abstract

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Gutenberg-Universität JGU Molecular Physics activity equilibrium

More articles from Physics and Astronomy:

nachricht How do neutron bells toll on the skin of the atomic nucleus?
18.09.2014 | Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN)

nachricht KTH enters the petaflop era with new supercomputer
18.09.2014 | KTH The Royal Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

BALTIC 2014: Baltic Sea Geologists meet in Warnemünde

03.09.2014 | Event News

IT security in the digital society

27.08.2014 | Event News

 
Latest News

KTH enters the petaflop era with new supercomputer

18.09.2014 | Physics and Astronomy

Researchers convert carbon dioxide into a valuable resource

18.09.2014 | Process Engineering

How do neutron bells toll on the skin of the atomic nucleus?

18.09.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>