Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active optical clock

15.04.2009
Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, has proposed the concept, principles and techniques of active optical clock. The study is reported in Issue 54 (February, 2009) of Chinese Science Bulletin because of its significant research value.

Up to date, all realize that optical clocks are based on the laser absorption spectroscopy. Thus the available laser with narrowest linewidth limits the linewidth of state-of-the-art optical clocks. However, experimental and theoretical results show that the thermal Johnson noise of cavity mirrors degrades the quantum limitation of Schawlow-Townes linewidth formula of good-cavity laser.

In this work, Prof. Chen proposed the concept, principles and techniques of active optical clock. This is the first extension of Hydrogen maser, which is the most stable atomic microwave clock and related to the Nobel Prize in Physics 1989, from microwave regime to optical regime.

The lasing behavior of active optical clock is a second-order phase transition. On the one hand, the collective emission of radiation from all gain atoms strongly narrows the linewidth of active optical clock described by the modified Schawlow-Townes linewidth formula. On the other hand, in an active optical clock, any shift and noise of the center frequency due to cavity will be reduced to a cavity pulling effect, which can be several orders of magnitude smaller than the general cavity noise.

"Active optical clocks provide several new possibilities of applications: (i) more stable optical clock than any current atomic clocks; (ii) sub-natural linewidth laser spectroscopy; (iii) long coherence time laser with linewidth at mHz level; (iv) Ramsey laser combining stimulated emission process and Ramsey separated oscillatory fields method." commented Prof. Yiqiu Wang, the co-author of the first book "The principles of quantum frequency standards" in the research field of quantum frequency standards. A series of papers about active optical clock written by Prof. Chen and colleagues have been published in Chin. Sci. Bull., Phys. Rev. A, etc. "It is a novel idea. The active optical clock enriched and expanded the optical clock research." said one reviewer.

The author is affiliated at Institute of Quantum Electronics of Peking University. This institute has been conducting research in a variety of atomic clocks for four decades.

Supported by the National Natural Science Foundation of China (Grant Nos. 10874009) and the National Basic Research Program of China (Grant No. 2005CB724500).

Reference:

Chen J. Active optical clock. Chin Sci Bull. 2009; 54(3): 348-352 http://219.238.6.200/article?code=982008-2451&jccode=98

Wang Y Q. Optical clock based on stimulated emission radiation. Chin Sci Bull. 2009; 54(3): 347-347 http://219.238.6.200/article?code=982008-2580&jccode=98

Yu D and Chen J. Laser theory with finite atom-field interacting time. Phys. Rev. A 2008; 78, 013846-1-013846-8 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000078000001013846000001&idtype=cvips&gifs=yes

J Chen | EurekAlert!
Further information:
http://www.pku.edu.cn

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>