Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acoustic levitation made simple

05.01.2015

Ultrasonic device made by Brazilian team to be featured on the cover of Applied Physics Letters this week

A team of researchers at the University of São Paulo in Brazil has developed a new levitation device that can hover a tiny object with more control than any instrument that has come before.


This shows levitation of expanded polystyrene particles and the simulated standing wave pattern.

Credit: M. Andrade/University of São Paulo

Featured on this week's cover of the journal Applied Physics Letters, from AIP Publishing, the device can levitate polystyrene particles by reflecting sound waves from a source above off a concave reflector below. Changing the orientation of the reflector allow the hovering particle to be moved around.

Other researchers have built similar devices in the past, but they always required a precise setup where the sound source and reflector were at fixed "resonant" distances. This made controlling the levitating objects difficult. The new device shows that it is possible to build a "non-resonant" levitation device -- one that does not require a fixed separation distance between the source and the reflector.

This breakthrough may be an important step toward building larger devices that could be used to handle hazardous materials, chemically-sensitive materials like pharmaceuticals -- or to provide technology for a new generation of high-tech, gee-whiz children's toys.

"Modern factories have hundreds of robots to move parts from one place to another," said Marco Aurélio Brizzotti Andrade, who led the research. "Why not try to do the same without touching the parts to be transported?"

The device Andrade and his colleagues devised was only able to levitate light particles (they tested it polystyrene blobs about 3 mm across). "The next step is to improve the device to levitate heavier materials," he said.

How the Acoustic Levitation Device Works

In recent years, there has been significant progress in the manipulation of small particles by acoustic levitation methods, Andrade said.

In a typical setup, an upper cylinder will emit high-frequency sound waves that, when they hit the bottom, concave part of the device, are reflected back. The reflected waves interact with newly emitted waves, producing what are known as standing waves, which have minimum acoustic pressure points (or nodes), and if the acoustical pressure at these nodes is strong enough, it can counteract the force of gravity and allow an object to float.

The first successful acoustical levitators could successfully trap small particles in a fixed position, but new advances in the past year or so have allowed researchers not only to trap but also to transport particles through short distances in space.

These were sorely won victories, however. In every levitation device made to date, the distance between the sound emitter and the reflector had to be carefully calibrated to achieve resonance before any levitation could occur. This meant that the separation distance had to be equal to a multiple of the half-wavelength of the sound waves. If this separation distance were changed even slightly, the standing wave pattern would be destroyed and the levitation would be lost.

The new levitation device does not require such a precise separation before operation. In fact, the distance between the sound emitter and the reflector can be continually changed in mid-flight without affecting the levitation performance at all, Andrade said.

"Just turn the levitator on and it is ready," Andrade said.

###

The article, "Particle manipulation by a non-resonant acoustic levitator" is authored by Marco A. B. Andrade, Nicolás Pérez and Julio C. Adamowski. It appears in the journal Applied Physics Letters on Monday, January 5, 2015 (DOI: 10.1063/1.4905130). After that date, it will be available at: http://scitation.aip.org/content/aip/journal/apl/106/1/10.1063/1.4905130

The authors of this paper are affiliated with the University of São Paulo in Brazil and Universidad de la República in Uruguay.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>