Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accounting for missing particles

13.02.2012
Measurements from high-energy collision experiments lead to a better understanding of why meson particles disappear

For several years, physicists at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), USA, have studied an unusual state of matter called the quark–gluon plasma, which they believe mimics the hot, dense particle soup that existed immediately after the big bang.


Figure 1: The PHENIX detector at the Relativistic Heavy Ion Collider measures the particles that emerge from high-energy collisions between nuclei. Copyright : 2011 Brookhaven National Laboratory

Now, the PHENIX collaboration at RHIC reports findings about a particle called the J/ø meson that will help physicists distinguish the properties of the quark–gluon plasma (QGP) from those of normal matter1.

To create a QGP, physicists crash gold nuclei together at close to the speed of light. This provides enough energy to break apart the protons and neutrons in the nuclei into their constituent quarks and gluons, which mediate the force between quarks. In this energetic mash up, a host of short-lived particles can form, including mesons, which are made up of a quark and an anti-quark.

When collisions of gold nuclei yield fewer J/ø mesons than expected from theoretical predictions, it indicates that a QGP has formed. Suppressed meson production can occur because the QGP weakens the binding force between the two quarks in the J/ø particle. The PHENIX collaboration’s detector (Fig. 1) counts the number of J/ø mesons created in collisions by detecting the electrons and muons—particles with the same charge, but more mass, than electrons—produced from J/ø decays.

Effects other than the formation of the QGP, however, can also suppress the yield of J/ø particles, which makes interpreting gold–gold collisions “ambiguous”, says Yasuyuki Akiba, a scientist at the RIKEN BNL Research Center and a member of the PHENIX collaboration.
To isolate these other effects, the PHENIX team analyzed data taken in 2003 and 2008 from collisions between deuterium—a proton and neutron—and gold, since these collisions cannot form a QGP. Even in the absence of a QGP, the team found the production of J/ø particles was more suppressed than expected at the highest relative velocities between the deuterium and the gold collisions. “Conventional models cannot describe the data,” says Akiba.

The team thinks the unexplained suppression may be related to how the apparent density of gluons in the gold nuclei, which determines the rate of J/ø production, varies with the speed of the deuterium.
More analysis is needed to determine whether this explanation is correct, but this work “gives a precise baseline that will be very useful for separating the quark–gluon plasma effects in gold–gold collisions,” says Akiba.

The corresponding author for this highlight is based at the Experimental Group, RIKEN BNL Research Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>