Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerating neutral atoms on a table top

28.01.2013
Charged particle accelerators have become crucially important to modern day life, be it in health care for cancer treatment or for answering important fundamental scientific questions like the existence of the HIGGS boson, the so called 'God particle'.

In a simple picture, charged particles like electrons and protons are accelerated between two end plates across which an electrical voltage is applied.


Highly charged Argon ions (orange) exploding from a nanocluster are reduced to neutrals (blue) in a mm accelerator due to dense excited clusters (green).

Credit: Dr. Rajeev Rajendran, TIFR

High energies need high voltages (millions and billions of volts) and long acceleration paths in giant sized machines – for instance the trillion volt machine called the 'large hadron collider' (LHC) which discovered the Higgs boson, circles over 27 km underground in Geneva! A new concept for a compact accelerator was discovered in the last decade using high powered, short pulses of laser light.

Alternating large electric fields of the light can be transformed in plasmas to create quasi static fields that can produce hundreds of millions volt accelerating voltages just over millimeter lengths on a table top!

How do we accelerate neutral particles- i.e. particles that cannot be energized by electrical voltages? And do it over millimeters rather than hundreds of meters and moreover using lasers? Research at Ultra Short Pulse High Intensity Lab in TIFR has now found a novel scheme that can do precisely this. The concept uses the ability of powerful lasers to strip nearly 8 electrons per atom in a nano sized, cooled aggregate of argon atoms- a nano piece of ice. A 40,000 atom cluster of argon is charged to 320,000 by a laser that lasts only a 100 billionth of a millionth of a second.

Such a super highly charged ice piece explodes soon after, accelerating the charged atoms (Ions) to a million electron volts of energy. The TIFR research now found that all the expelled electrons can be put back into the charged ion that has been accelerated so that it now reverts to being a neutral atom but at high energies. To top it all, this process is nearly 100% efficient at neutralizing the speeding ions and converting them to fast atoms!

Accelerated neutral atoms are very important for many applications. Unaffected by electric or magnetic fields, they penetrate deeper in solids than electrons/ions and thereby create high finesse microstructures for novel electronics and optical devices. Fast atoms are used both as diagnostics and heating sources in Tokomak machines like the ITER (International Thermonuclear Experimental Reactor) in France, that are being developed to create sustained thermo-nuclear fusion. The TIFR scheme can produce a point source of fast neutral atoms close to the location of an intended application.

As the old adage goes, staying neutral under extreme provocation certainly has its advantages!

Prof. M. Krishnamurthy | EurekAlert!
Further information:
http://www.tifr.res.in

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>