Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerating neutral atoms on a table top

28.01.2013
Charged particle accelerators have become crucially important to modern day life, be it in health care for cancer treatment or for answering important fundamental scientific questions like the existence of the HIGGS boson, the so called 'God particle'.

In a simple picture, charged particles like electrons and protons are accelerated between two end plates across which an electrical voltage is applied.


Highly charged Argon ions (orange) exploding from a nanocluster are reduced to neutrals (blue) in a mm accelerator due to dense excited clusters (green).

Credit: Dr. Rajeev Rajendran, TIFR

High energies need high voltages (millions and billions of volts) and long acceleration paths in giant sized machines – for instance the trillion volt machine called the 'large hadron collider' (LHC) which discovered the Higgs boson, circles over 27 km underground in Geneva! A new concept for a compact accelerator was discovered in the last decade using high powered, short pulses of laser light.

Alternating large electric fields of the light can be transformed in plasmas to create quasi static fields that can produce hundreds of millions volt accelerating voltages just over millimeter lengths on a table top!

How do we accelerate neutral particles- i.e. particles that cannot be energized by electrical voltages? And do it over millimeters rather than hundreds of meters and moreover using lasers? Research at Ultra Short Pulse High Intensity Lab in TIFR has now found a novel scheme that can do precisely this. The concept uses the ability of powerful lasers to strip nearly 8 electrons per atom in a nano sized, cooled aggregate of argon atoms- a nano piece of ice. A 40,000 atom cluster of argon is charged to 320,000 by a laser that lasts only a 100 billionth of a millionth of a second.

Such a super highly charged ice piece explodes soon after, accelerating the charged atoms (Ions) to a million electron volts of energy. The TIFR research now found that all the expelled electrons can be put back into the charged ion that has been accelerated so that it now reverts to being a neutral atom but at high energies. To top it all, this process is nearly 100% efficient at neutralizing the speeding ions and converting them to fast atoms!

Accelerated neutral atoms are very important for many applications. Unaffected by electric or magnetic fields, they penetrate deeper in solids than electrons/ions and thereby create high finesse microstructures for novel electronics and optical devices. Fast atoms are used both as diagnostics and heating sources in Tokomak machines like the ITER (International Thermonuclear Experimental Reactor) in France, that are being developed to create sustained thermo-nuclear fusion. The TIFR scheme can produce a point source of fast neutral atoms close to the location of an intended application.

As the old adage goes, staying neutral under extreme provocation certainly has its advantages!

Prof. M. Krishnamurthy | EurekAlert!
Further information:
http://www.tifr.res.in

More articles from Physics and Astronomy:

nachricht Attosecond camera for nanostructures
31.05.2016 | Max-Planck-Institut für Quantenoptik

nachricht Rosetta’s comet contains ingredients for life
30.05.2016 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>