Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abrupt motion sharpens x-ray pulses

28.07.2017

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray pulses of state-of-the-art x-ray sources in a narrow spectral region. Such x-ray pulses are desired for a number of fundamental physics experiments or are a prerequisite for some precision experiments.


Before motion (top) the light scattered by the target (blue) extinguishes the excitation (red). After the motion (bottom), the scattered light is displaced and the waves enhance each other (magenta).

MPI für Kernphysik

The key roles are played by a piezoelectric transducer which performs precise motions upon electric signals and by a thin iron foil. Precisely synchronized motions redistribute the photons within the x-ray pulse to a narrow wavelength region. “Together with a team from the division of Thomas Pfeifer at the MPIK, the Deutsche Elektronen-Synchrotron (DESY) in Hamburg and the European Synchrotron Radiation Facility (ESRF) in Grenoble, we could demonstrate that the method works.

In fact, the spectrum of x-ray pulses can be manipulated by purely mechanical means”, says Jörg Evers from the division of Christoph Keitel at MPIK and emphasizes the advantages: “Our method doesn’t waste photons like a monochromator that only cuts off the undesired wavelengths. On the other hand, we don’t need to increase the overall energy of the x-ray pulse.”

For their experiments, the physicists used x-ray pulses of the synchrotron facilities ESRF and PETRA III (DESY). The method is based on the Mössbauer effect; therefore, the iron foil is enriched with the isotope 57Fe. In the solid state, this “Mössbauer isotope” may absorb and emit photons without recoil. Thus, the iron foil absorbs an extremely small section of the relatively broad x-ray pulse and “resonantly” emits this light after a certain time delay.

Within this short time span, the piezoelectric transducer moves the iron foil such that the resonant wavelengths are enhanced at the expenses of the “outer” wavelengths due to interference effects. “This displacement by half the resonant wavelength must be controlled to less than a tenth of a nanometer and take place within a few nanoseconds”, explains first author Kilian Heeg, PostDoc in the group of Jörg Evers, the requirements.

In the future, the new method could be advanced for deployment in the routine operation of x-ray sources like synchrotrons or free-electron lasers. The increased intensity results in shorter measurement times and enables measurements with presently low signal rates. Further, the higher signal rates translate into better energy, temporal and spatial resolution. On the other hand, the technique opens the possibility to track motions on atomic scales.

Original publication:
Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances K. P. Heeg, A. Kaldun, C. Strohm, P. Reiser, C. Ott, R. Subramanian, D. Lentrodt, J. Haber, H.-C. Wille, S. Goerttler, R. Rüffer, C. H. Keitel, R. Röhlsberger, T. Pfeifer, J. Evers
Science 357, 375-378 (2017) doi: 10.1126/science.aan3512 http://science.sciencemag.org/content/357/6349/375

Contact:

PD Dr. Jörg Evers
Division Keitel, MPI für Kernphysik
Tel.: +49 6221-516-177
E-Mail: joerg.evers(at)mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik
Tel.: +49 6221-516-380
E-Mail: thomas.pfeifer(at)mpi-hd.mpg.de

Prof. Dr. Ralf Röhlsberger
Deutsches Elektronen-Synchrotron DESY
Tel: +49 40 8998 4503
email: ralf.roehlsberger(at)desy.de

Weitere Informationen:

https://www.mpi-hd.mpg.de/keitel/evers/ -Group Evers (MPIK, Division Keitel)
https://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home/ - Division Pfeifer (MPIK)
http://photon-science.desy.de/research/research_teams/magnetism_and_coherent_phe... - Group Röhlsberger (DESY)

Dr. Gertrud Hönes | Max-Planck-Institut für Kernphysik

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>